Editor: Martin Fowler

ThoughtWorks

fowler@acm.org

Martin Fowler

oftware design is not easy—not easy

to do, teach, or evaluate. Much of

software education these days is

about products and APIs, yet much

of these are transient, whereas good

design is eternal—if only we could
figure out what good design is.

One of the best ways to capture and pro-
mulgate good design is to learn
from the patterns community.
Their work, especially the famous
book Design Patterns (E. Gamma
et al., Addison Wesley, Reading,
Mass., 1994), has become a cor-
nerstone for many designers of
object-oriented software. Pat-
terns are not easy to understand,
but they reward the effort of
study. We can learn from the spe-
cific solutions they convey and
from the thinking process that leads to their
development. The thinking process is hard to
grasp, but understanding it helps us discover
principles that often generate these patterns.
Over the last year, 've been struck by one
of the underlying principles that leads to
better designs: remove duplication. It’s also
been highlighted by mantras in a couple of
recent books: the DRY (don’t repeat your-
self) principle in the Pragmatic Programmer
(A. Hunt, and D. Thomas, Addison Wesley,
1999) and “Once and Only Once” from Ex-
treme Programming Explained: Embrace
Change (K. Beck, Addison Wesley, 1999).
The principle is simple: say anything in
your program only once. Stated blandly like
that, it hardly bears saying. Yet identifying

and removing repetition can lead to many
interesting consequences. I have an increas-
ing sense that a pig-headed determination to
remove all repetition can lead you a long
way toward a good design and can help you
apply and understand the patterns that are
common in good designs.

Take a simple example: subroutine calls.
You use a subroutine when you realize that
two blocks of code, in different places, are
or will be the same. You define a subroutine
and call it from both places. So, if you
change what you need to, you don’t have to
hunt down multiple repetitions to make the
change. Granted, sometimes the duplication
is just a coincidence, so you wouldn’t want
a change in one to affect the other—but I
find that is rare and easy to spot.

So what if the blocks are similar but not
identical? Maybe some data is different in
the two cases. In that case, the answer is ob-
vious: you parameterize the data by passing
in arguments to a subroutine. One block of
code that multiplies by five and another
that multiplies by 10 become one block that
multiplies by x, and you replace x with the
right number.

That’s a simple resolution but it illus-
trates a basic principle that carries over into
more complicated cases. Identify what is
common and what varies, find a way to iso-
late the common stuff from the variations,
then remove the redundancy in the common
stuff. In this case, separating the commonal-
ity and the variability is easy. Many times it
seems impossible, but the effort of trying
leads to good design.

January/February 2001 I1EEE SOFTWARE 97



What'’s the same and what’s
different?

What if two routines have the
same basic flow of behavior but dif-
fer in the actual steps (see Figure 1)?
These two routines are similar, but
not the same. So, what is the same
and what is different?

The sameness is the routine’s over-
all structure, and the differences are in
the steps. In both cases, the structure is

m print some header for the invoice,

= loop through each item printing a
line, and

= print a footer for the invoice.

As Figure 2 shows, we can separate
the two by coming up with some kind
of printer notion with a common in-
terface for header, footer, and lines
and an implementation for the ASCII
case. Figure 3a shows that the com-
mon part is then the looping structure,
so we can wire the pieces together as
shown in Figure 3b.

There’s nothing earth-shattering
about this solution; just apply a poly-
morphic interface—which is common
to any OO or component-based envi-
ronment that lets you easily plug in
multiple implementations of a com-
mon interface. Design Patterns
junkies will recognize the Template
Method pattern. If you are a good de-
signer and are familiar with polymor-
phic interfaces, you could probably
come up with this yourself—as many
did. Knowing the pattern just gets
you there quicker. The point is, the
desire to eliminate duplication can
lead you to this solution.

Thinking in terms of duplication
and its problems also helps you un-
derstand the benefits of patterns.
Framework folks like patterns be-
cause they easily let you define new
pluggable behaviors to fit behind the
interface. Eliminating duplication
helps because as you write a new im-
plementation, you don’t have to
worry about the common things that

class Invoice...

String asciiStatement () {
StringBuffer result = new StringBuffer();
result.append(“Bill for “ + customer + “\n”);

Iterator it = items.iterator();
while(it.hasNext()) {
LineItem each = (LinelItem) it.next();

result.append(”“\t” + each.product() + “\t\t”
+ each.amount () + “\n”);
}
result.append(”“total owed:” + total + “\n”);
return result.toString();

String htmlStatement () {
StringBuffer result = new StringBuffer();
result.append(“<P>Bill for <I>”" + customer + “</I></P>");
result.append(“<table>");

Iterator it = items.iterator();
while(it.hasNext()) {
LineItem each = (LinelItem) it.next();

result.append(“<tr><td>” + each.product ()
+ “</td><td>" + each.amount () + “</td></tr>");
}
result.append(“</table>") ;
result.append (“<P> total owed:<B>" + total + “</B></P>");
return result.toString();

Figure 1. Two similar routines with different steps.

interface Printer ({
String header (Invoice iv);
String item(LineItem line);
String footer (Invoice iv);

(a)

static class AsciiPrinter implements Printer ({
public String header (Invoice iv) {
return “Bill for “ + iv.customer + “\n”;
}
public String item(LineItem line) {
return “\t” + line.product () + “\t\t” + line.amount () +“\n”;
}
public String footer(Invoice iv) {
return “total owed:” + iv.total + “\n”;

(b)

Figure 2. (a) A common interface for header, footer, and lines and
(b) an implementation for the ASCII case (try the HTML case as an
exercise on your own).

need to be. Any common behavior
should be in the template method.
This lets you concentrate on the new

98 IEEE SOFTWARE January/February 2001



class Invoice...
public String statement (Printer pr) {

StringBuffer result = new StringBuffer();

result.append (pr.header(this));

Iterator it = items.iterator();

while(it.hasNext()) {
LineItem each = (LineItem) it.next();
result.append(pr.item(each));

}

result.append (pr.footer(this));

return result.toString();

}
(@

class Invoice...

}
(b)

public String asciiStatement2 () {
return statement (new AsciiPrinter());

Figure 3. (a) The common part of the routine and (b) the pieces

behavior rather than the old.

The principle of duplication also
helps you think about when to apply
this pattern. As many people know,
one of the problems with people who
have just read a pattern is that they
insist on using it, which often leads to
more complicated designs. When you
insist on using a pattern, ask, “What
repetition is this removing?” Remov-
ing repetition makes it more likely
that you’re making good use of the
pattern. If not, perhaps you shouldn’t
use it.

Often, the hard part of eliminat-
ing duplication is spotting it in the
first place. In my example, you can
spot the two routines easily because
they are in the same file and located
close to each other. What happens
when they are in separate files and
written by different people in differ-
ent millennia?

This question leads us to think
about how we construct our soft-
ware to reduce the chances of this
happening. Using abstract data types
is a good way of doing this. Because
you have to pass data around, you
find that people are less likely to du-
plicate data structures. If you try to
place routines next to their data

structures, you are more likely to
spot any duplication in the routines.
Much of the reason why objects are
popular is because of this kind of so-
cial effect, which works well when
reinforced by a culture that encour-
ages people to look around and fix
duplications when they do arise.

principle that leads to good de-

sign. I intend to use this column
to explore other simple principles
that have this effect. Have you no-
ticed simple principles like this in
your work? If so, please contact
me—DI’m always happy to repeat
good ideas. @

s 0, avoiding repetition is a simple

Martin Fowler is the chief scientist for ThoughtWorks, an
Internet systems delivery and consulting company. For a decade,
he was an independent consultant pioneering the use of objects
in developing business information systems. He's worked with
technologies including Smalltalk, C++, object and relational
databases, and Enterprise Java with domains including leasing,
payroll, derivatives trading, and healthcare. He is parficularly
known for his work in patterns, UML, lightweight methodologies,
and refactoring. He has written four books: Analysis Patterns,
Refactoring, Planning Extreme Programming, and UML Distilled.
Contact him at fowler@acm.org.

Soltware

Howito
Reach Us

Writers
For detailed information on submitting arficles,
write for our Editorial Guidelines (software@
computer.org), or access computer.org/
software/author.htm.

Letters to the Editor
Send letters fo

Letters Editor

IEEE Software

10662 Los Vagueros Circle
Los Alamitos, CA 90720
dstrok@computer.org

Please provide an e-mail address or
daytime phone number with your letter.

On the Web
Access computer.org/software for information
about IEEE Software.

Subscription Change of Address
Send change-of-address requests for magazine
subscriptions fo address.change@ieee.org.
Be sure to specify IEEE Software.

Membership Change of Address
Send change-of-address requests for the mem-
bership directory to directory.updates@
compufer.org.

Missing or Damaged Copies
If you are missing an issue or you received
a damaged copy, contact membership@
compufer.org.

Reprints of Artides
For price information or to order reprints, send
e-mail o software@computer.org or fax +1
714821 4010.

Reprint Permission
To obtain permission to reprint an article, con-
tact William Hagen, IEEE Copyrights and Trade-
marks Manager, at whagen@ieee.org.

January/February 2001 1EEE SOFTWARE 99



