
9 6 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 3 / $ 1 7 . 0 0 © 2 0 0 3 I E E E

design

O
ne of the most important things about
good design is modularity—dividing a
system into separate pieces so that you
can modify one module without the
changes rippling all over the system.
Early on, David Parnas observed that

modules should be arranged around system se-
crets, each module hiding its secret from the
other modules. Then if the secret thing changes,
you avoid a ripple effect.

One of the most common secrets to hide these
days is data structures. An axiom of object-
oriented design is that data should always be

private, but the idea of hiding data
goes far beyond objects. Here I’m
going to talk about guidelines for
basic data hiding. My examples all
use objects (I am after all an object
bigot), but the arguments apply
just as well to non-OO modules.

When thinking about data ac-
cess routines, I find two major
cases: encapsulating either a single
value (such as a person’s name) or a
collection (such as the line items on

an order). The two cases are a bit different, with
the collection case being more complicated, so
I’ll start with a single value.

Accessing single values
The simplest data encapsulation approach

that a language can take is to make data inac-
cessible from outside the module and to pro-
vide accessor methods that clients can use to
get that data. So in Java, we find code such as
in Figure 1. We can then manipulate our data
with code such as

aPerson.setName(“Martin Fowler”);

The value of encapsulating something in
this way appears when we want to add behav-
ior to the accessor functions. Suppose we
change our class so that it stores first and last
names separately but still provides a single
name string when required. We can do that
with the code in Figure 2 while still preserving
the interface in Figure 1. This ability to alter
internal data structures without changing
clients is the essence of encapsulating data.
(Actually, the interface isn’t quite preserved.
The old code would accept names that didn’t
have two words, whereas the new one rejects
them. I’ll leave dealing with that as an exercise
for you.)

Although this is a common approach, it’s
actually quite inconvenient to work with. It’s
much better for encapsulated data to look the
same as public data, so that we can write code
such as

aCustomer.name = “Martin Fowler”.

We can’t do this with some languages, but
we can through others that use the notion of
properties. So, for example, in C# we can
write simple accessors such as in Figure 3. If
we then need to add behavior, we can do so us-
ing code as in Figure 4. The clients still access
the property in the same way (or almost—it
does make a difference in .NET if you use re-
flection). The result feels much more natural,
or at least it does to me.

Accessing a collection of values
While encapsulating single values is usually

pretty well understood, that same understand-
ing doesn’t seem to quite make it to multiple
values. There are a number of subtleties in-

Data Access Routines
Martin Fowler

E d i t o r : M a r t i n F o w l e r ■ T h o u g h t Wo r k s ■ f o w l e r @ a c m . o r g

N o v e m b e r / D e c e m b e r 2 0 0 3 I E E E S O F T W A R E 9 7

DESIGN

volved, and language support tends to be rather less than
that for single values.

The most common thing beginners miss is to use the same
interface style for collections as for single values—and they
fail to realize that this often breaks encapsulation. In the
code in Figure 5, the tracks aren’t fully encapsulated: clients
can access the actual list of tracks and add or remove tracks
to that list without the album knowing about it. When we
encapsulate access to a collection, we usually want to know

when someone adds or removes items, so we must avoid
passing out the naked data structure.

I see three main ways to support the ability to read val-
ues while retaining encapsulation: copying, protection
proxy, and using an iterator.

The simplest of the three is to pass out a copy of the un-
derlying data structure, as in Figure 6. A protection proxy
passes out a wrapper to the collection that prevents updates
(Figure 7). Both of these techniques give the client a collec-

Figure 1. Encapsulating a single-valued field with
accessors (in Java).

Figure 2. Altering the data structure in Figure 1 while
(almost) preserving the interface (in Java).

Figure 3. Encapsulating a single-valued field with a
property (in C#).

class Person {

private String name;

public String getName() {return name;}

public void setName(String arg)

{name = arg;}

}

class Person {

private String lastName;

private String firstName;

public String getName() {

return firstName + “ “ + lastName;

}

public void setName(String arg) {

String[] words = arg.split(“ “);

if (words.length != 2)

throw new IllegalArgumentException

(“name must have two words”);

firstName = words[0];

lastName = words[1];

}

class Person {

public String Name;

public static void Main() {

Person martin = new Person();

martin.Name = “Martin Fowler”;

System.Console.WriteLine(martin.Name);

}

}

Figure 4. Altering the data structure in Figure 3 while
(almost) preserving the interface (in C#).

class Person {

public String Name {

get {

return _firstName + “ “ + _lastName;

}

set {

String[] words = value.Split(‘ ‘);

if (words.Length != 2)

throw new Exception (“name can only

have two words”);

_firstName = words[0];

_lastName = words[1];

}

}

private String _firstName;

private String _lastName;

Figure 5. A class that doesn’t fully encapsulate its
collection field (in Java).

class Album {

private List tracks =new ArrayList();

public List getTracks() {

return tracks;

}

}

Figure 6. Preserving collection encapsulation by copying
(in Ruby).

class Album

def initialize

@tracks = []

end

def tracks

return @tracks.clone

end

end

9 8 I E E E S O F T W A R E h t t p : / / c o m p u t e r. o r g / s o f t w a r e

DESIGN

tion. With a copy, the client may change the copy, but this
has no effect on the album’s storage. With protection proxy,
you get a runtime error if you try to change it. (C++’s const
keyword gives you a similar capability.)

Often clients want to iterate through a collection and do
something with the elements. So, another good tack is to
provide an iterator (see Figure 8). The most common kind
is an external iterator, with methods that let users advance
it, test for the end of the collection, and access the current
object.

Each of the three approaches has its pros and cons. I pre-
fer protection proxy because it clearly signals what’s going
on. If I can’t easily do that, I go with a copy. Most people
are concerned about the performance of frequent copies, but
in practice, that’s a much rarer problem than people think (af-
ter all, you are only copying references, not the referred ob-
jects). The iterator only lets you iterate—it doesn’t give you all
the other methods that a collection can (size, contains,
and so on). Although I’ve shown a C# iterator, I wouldn’t
choose that approach in C# because it prevents me from us-
ing the foreach statement.

Often you’ll find that people don’t protect the collection
at all but rely on convention to avoid modifying the under-
lying collection. As I said earlier, this isn’t really encapsula-
tion and can lead to awkward bugs if people alter the col-
lection directly. In some cases, however, the alternatives
become too awkward to be worthwhile.

Don’t worry about any calls made to the members once
they are being iteraterated over. Enacapsulating a collection
doesn’t mean that you prevent changes to the members in
the collection but that you prevent changes to the member-
ship of the collection.

In contrast, the modify methods (usually an add and a
remove method) are easy to support. You might also see an

addAll method. Assignment is rare; supporting it is fine
during object creation or if there’s no behavior in the adds
and removes. If there is behavior there, assignment becomes
more complicated.

One sticky area for this kind of collection encapsulation
is where you use a framework that expects direct access. The
most common case of this is a GUI framework with data
binding to a collection interface. Here you are faced with
two unpleasant alternatives: either you retain the encapsula-
tion and give up the convenient binding, or you use the bind-
ing. If you use the binding, you must break the owning class’s
encapsulation or use messy techniques such as collection-
specific subclasses or events. It’s difficult to make general-
izations here because the trade-offs tend to vary with the
GUI platform and tooling. I want to explore this further; if
I do, I’ll post my conclusions to http://martinfowler.com.

Self-encapsulation
A common issue is whether you should use accessors

within a class. The rationale for doing so is that any extra
behavior is used consistently within a class. It also can make
matters easier if you subclass and want to override the ac-
cessor behavior. On the negative side, it can make the code
more cluttered. I don’t have a strong opinion either way.

Object construction
People often ask whether it’s better to create an empty

object and use setters to add its data, or to use a multiargu-
ment constructor. In general, I prefer to create fully formed
objects, so I usually prefer the multiargument constructor.
It’s particularly handy with immutable data, which you can
then clearly signal by not including a setter. Having said
that, an empty-object approach can be better in some cases,
so it’s not an iron-clad rule.

I usually find that life is much easier if you initialize a col-
lection field to an empty collection during object construc-
tion. That way, you don’t have to deal with null checks in
any of the later code.

Be wary of accessors
Finally, I must point out an important caveat: Only pro-

vide accessors if you really need to. Accessors often lead to
code where one object pulls data out of another and then
does something that the original owner should have done di-
rectly. A module that only has accessors is usually a bad
thing. Modules are better if they really hide their data and
don’t provide accessors at all. Often this isn’t possible, par-
ticularly in very data-oriented applications. But whenever
you call an accessor, ask yourself if that doesn’t suggest mov-
ing some behavior to the module with the data. A general
rule of thumb is to question any situation where one object
makes multiple calls to another’s accessors.

Martin Fowler is the chief scientist for ThoughtWorks, an Internet systems delivery and con-
sulting company. Contact him at fowler@acm.org.

Figure 7. Using a protection proxy to encapsulate a
collection (in Java).

Figure 8. Using an iterator to encapsulate a collection
(in C#).

class Album {

private List tracks = new ArrayList();

public List getTracks() {

return Collections.unmodifiableList

(tracks);

}

}

class Album {

private IList tracks = new ArrayList();

public IEnumerator TrackEnumerator {

get {return tracks.GetEnumerator();}

}

