
I
 for any length of
time, you should have heard about the notion of it-

erative development. The idea of iteration is that you
cannot get a design right the first time, you need to refine it as
you build the software. By iterating over the design several
times, you get a better design. Even throwing away code
helps; indeed it is the sign of a good project that it does regu-
larly throw away code. To not do so indicates a lack of learn-
ing—and keeping bad ideas around.

Iteration is a great principle to discuss, but it has some
problems in practice. If you make a change to existing code,
does that not carry the risk of introducing bugs? While people
have come up with various techniques and methods for design
in advance, there is not much discussion of how to apply them
in an iterative process, or how to do the iteration in a con-
trolled and efficient manner.

Refactoring is the first technique I’ve come across that is
explicitly about doing iterative development in a controlled
manner. It starts with software that currently works but is not
well suited to an enhancement you wish to make. Refactoring
is the controlled process of altering the existing software so
it’s design is the way you want it now, rather than the way you
wanted it then. It does this by applying a series of particular
code transformations, each of which are called refactorings.

Each refactoring helps change the code in a way that both is
rapid and does not introduce bugs. (Yes, I know that means
the word refactoring means two different things—I guess over-
loading is just ingrained in this industry!)

How does refactoring do this magic? Essentially, there are two
routes. The first is manual; the second relies on tools. Although
using tools is less common at the moment, I’ll start with that.

Refactoring With Tools The essence of the tools-based ap-
proach is the notion of the semantics-preserving transformation.

This is a transformation that you can prove will not change the
execution of the program. An example of this is a refactoring
called extract method. If you have a long section of procedural
code, you can make it easier to read by taking a suitable chunk
of the procedure and turning it into a separate method. To do
this with a tool, you select the code you wish to extract, and the
tool analyzes this code, looking for temporary variables and pa-
rameters. Depending on what the selected code does with these

local variables, you may have to pass in parameters, return a
value, or even not be able to do the extraction. The tool does
this analysis, prompts for the new method name, asks you to
name any parameters, and creates the new method with a call
from the old one. The program works exactly the same as it did
before but is now a little easier for a human to read. This is im-
portant: Any damn fool can write code that a computer can un-
derstand, the trick is to write code that humans can understand.

The tool builder has to prove that the refactoring is seman-
tics preserving, then figure out how to provably carry out the
transformation in the code. It’s hairy stuff and requires a lot of
knowledge of compiler technology, but it can be done. The
benefit is immediate. Once the transformation is encoded, you
can use it with complete confidence. A semantics-preserving
transformation is never going to add a bug to your program.

Tools like this are not science fiction. Bill Opdyke, while
a student at the University of Illinois, proved several of these
refactorings. Since then, two other graduate students, John
Brant and Don Roberts, have produced a refactoring browser
for Smalltalk that implements these refactorings, and a few
more. If you are a Smalltalker, you should download it from
www.cs.uiuc.edu/users/droberts/Refactory.html.

The refactoring browser is an awesome tool. With it I
can safely reorganize some pretty ugly code (and yes even
Smalltalk can get ugly). But what if you are working outside
of Smalltalk? Is refactoring still applicable? The answer is yes,
although not with tool support.

Refactoring Without Tools Although manual refactoring is
not as easy, it is still possible—and useful. It boils down to two
principles: take small steps and test frequently.

Humans can use the same semantics-preserving transforma-
tion tools use, but in method extraction you have to look at the
local variables yourself. It takes a little longer, but it isn’t too dif-
ficult, because you’re looking at only a small section of code.
You then move the code over, put in the call, and recompile.

If you did it correctly, you won’t get any bugs. Of course,
that’s a big if, so this is where tests come in. With manual
refactoring you need to have a battery of tests that exercise
the code sufficiently to give you confidence that you won’t in-
troduce new bugs. If you build self-testing code, then you will
already have those tests. If not, you have to build them your-
self, but of course tests are useful anyway, since they make it
easier to add new function as well as refactor.

After the Program Runs
Refactoring: Doing Design

After the Program Runs

Martin Fowler
fowler@acm.org

M E T H O D S I N P R A C T I C E

Martin Fowler is an independent consultant based in Boston, MA.

DISTRIBUTED www.DistributedComputing.com Computing 55

Refactoring to Understand Code When you follow a
rhythm of small change, test, small change, test, you can make
some remarkably large changes to a design. I’ve gone into some
pretty nasty lumps of code, and after a few hours found class
structures that radically improve the software design. I don’t
usually have the design in mind when I start. I just go into the
code and refactor initially just to understand how the code
works. Gradually, as I simplify the code, I begin to see what a
better design might be and alter the code in that direction.

Refactoring to understand code is an important part of the
activity. This is obviously true if you are working with some-
one else’s code, but it is often true with your own code as well.
I’ve often gone back to my own programming and not fully
understood what I was doing from the code, or gained a better
understanding by comparing it to later work. Of course, you
can do a similar thing by commenting, but I’ve found it better
to try to refactor the code so its intention is clear from the
code, and it does not need so many comments. Some refactor-
ers go so far to claim that most comments are thus rendered
unnecessary. I don’t go that far, but I do prefer to reach clarity
through good factoring if I can.

The Value of Refactoring Refactoring has become a central
part of my development process, and of the process I teach
through my seminars and consulting work. It’s a design tech-
nique that is a great complement to the up-front design tech-
niques advocated by the UML and various methods.

Its great strength is that it works on existing software. I’m
rarely faced with a green field. Often I have to work with
some form of existing code base. Refactoring provides a way
to manipulate and improve the code base without getting
trapped in bugs.

When working with new code, it gives developers the abil-
ity to change designs and make the iterative development pro-
cess much more controlled. I’ve noticed that it makes a signifi-
cant improvement to development speed. When trying to add
new function to software, several projects have seen how it is
quicker to first refactor the existing software to make the
change easier. Thus I don’t recommend setting aside time to
refactoring. It should be something you do because you need
to add a feature or fix a bug. That also makes it easier to justify
to skeptical managers.

The biggest problem with refactoring at the moment is
finding out more about how to do it. I’m in the process of
writing about what I, and various others, have learned about
the process, but that is still a way from publication. You can
find some more information, including references and an in-
troductory example of refactoring, at ourworld.
compuserve.com/homepages/Martin_Fowler/.

I hope I’ve stimulated you to find out more about refactor-
ing. I believe it is going to be one of crucial new developments
of the next few years, and tools that include refactorings will
be very important to software developers. I’d be interested to
know what you think; drop me a note at fowler@acm.org. s

DISTRIBUTED 56 Computing September 1998

56
MindQ Ad

