
The future is:

NoSQL Databases

Polyglot Persistence

a note on the future of data storage in 
the enterprise, written primarily for those 
involved in the management of 
application development.

Martin Fowler

Pramod Sadalage

© Martin Fowler and Pramod Sadalage Rendered: February 8, 2012 11:26



2

SQL has Ruled for two decades

Mostly Standard
The relational model is widely 
used and understood. Interaction 
with the database is done with 
SQL, which is a (mostly) standard 
language. This degree of 
standardization is enough to keep 
things familiar so people don’t 
need to learn new things

Store persistent data
Storing large amounts of data 
on disk, while allowing 
applications to grab the bits 
they need through queries

Concurrency Control
Many users access the same 
information at the same time. 
Handling this concurrency is 
difficult to program, so databases 
provide transactions to help 
ensure consistent interaction.

Application Integration
Many applications in an enterprise 
need to share information. By 
getting all applications to use the 
database, we ensure all these 
applications have consistent, up-to-
date data

All this supported by Big Database Vendors and the separation of the DBA profession.

Reporting
SQL’s simple data model and 
standardization has made it a 
foundation for many reporting 
tools



3

but SQL’s dominance is cracking

Relational databases are designed 
to run on a single machine, so to 
scale, you need buy a bigger 
machine

But it’s cheaper and more effective 
to scale horizontally by buying lots of 
machines.

The machines in these large clusters are 
individually unreliable, but the overall cluster 
keeps working even as machines die - so the 
overall cluster is reliable.

The “cloud” is exactly this kind of cluster, which 
means relational databases don’t play well with 
the cloud.

The rise of web services provides an effective 
alternative to shared databases for application 
integration, making it easier for different 
applications to choose their own data storage.

Google and Amazon were both early 
adopters of large clusters, and both 
eschewed relational databases.

Google Bigtable

Amazon Dynamo

SQL
SQL

Their efforts have been a large inspiration 
to the NoSQL community



4

so now we have NoSQL databases

There is no standard definition of what NoSQL 
means. The term began with a workshop 
organized in 2009, but there is much 
argument about what databases can truly be 
called NoSQL. 

But while there is no formal definition, there 
are some common characteristics of NoSQL 
databases

they don’t use the relational data model, 
and thus don’t use the SQL language
they tend to be designed to run on a 
cluster
they tend to be Open Source 
they don’t have a fixed schema, allowing 
you to store any data in any record

examples include

We should also remember Google’s 
Bigtable and Amazon’s SimpleDB. While 
these are tied to their host’s cloud 
service, they certainly fit the general 
operating characteristics

http://martinfowler.com/bliki/NosqlDefinition.html
http://martinfowler.com/bliki/NosqlDefinition.html


5

Reduce Development Drag

A lot of effort in application development is tied up in 
working with relational databases. Although Object/
Relational Mapping frameworks have eased the load, the 
database is still a significant source of developer hours. 
Often we can reduce this effort by choosing an alternative 
database that’s more suited to the problem domain.

We often come across projects who are using relational 
databases because they are the default, not because they 
are the best choice for the job. Often they are paying a 
cost, in developer time and execution performance, for 
features they do not use.

so this means we can
Embrace Large Scale

The large scale clusters that we can support with 
NoSQL databases allow us to store larger datasets 
(people are talking about petabytes these days) to 
process large amounts of analytic data. 

Alternative data models also allow us to carry out many 
tasks more efficiently, allowing us to tackle problems 
that we would have balked at when using only relational 
databases

McLaren
Streaming of telemetric data into 
MongoDB for later analysis. Orders 
of magnitude faster than relational 
(SQL Server). [more...]

Guardian
New functionality uses Mongo rather 
than relational DB. They found 
Mongo’s document data model 
significantly easier to interact with for 
their kind of application. [more...]

Danish Health Care
Centralized record of drug 
prescriptions. Currently held in 
MySQL databases, but concerned 
about scale for both response time 
and availability. Migrated data to 
Riak. [more...]DNC

Searching 300 Million voters 
information for 1 person with 
addresses, emails, phones is 
tough with a relational data store. 
MongoDB was used to store the 
documents about the person. 
[more...]

http://www.slideshare.net/a5hok/project-phoenix-mongouk-2011
http://www.slideshare.net/a5hok/project-phoenix-mongouk-2011
http://www.infoq.com/presentations/Why-I-Chose-MongoDB-for-Guardian
http://www.infoq.com/presentations/Why-I-Chose-MongoDB-for-Guardian
http://www.infoq.com/presentations/Case-Study-Riak-on-Drugs
http://www.infoq.com/presentations/Case-Study-Riak-on-Drugs
http://www.10gen.com/presentations/mongodc2010/dnc
http://www.10gen.com/presentations/mongodc2010/dnc


6

but this does not mean relational is dead

the relational model is still 
relevant

The tabular model is suitable for 
many kinds of data, particularly 
when you need to pick apart data 
and re-assemble it in different 
ways for different purposes.

ACID transactions 
In order to run effectively on a 
cluster, most NoSQL databases 
have limited transactional 
capability. Often this is enough… 
but not always.

Familiarity 
NoSQL systems are still new, so 
people aren’t familiar with using 
them. So we shouldn’t be using 
them on utility projects where 
their benefits would have less 
impact.

Tools 
The long dominance of SQL 
means that many tools have been 
written to work with SQL 
databases. Tooling for alternative 
datastores is much more limited.



7

this leads us to a world of

Polyglot Persistence
using multiple data storage technologies, chosen 
based upon the way data is being used by 
individual applications. Why store binary images 
in relational database, when there are better 
storage systems?

Polyglot persistence will occur over the enterprise 
as different applications use different data storage 
technologies. It will also occur within a single 
application as different parts of an application’s 
data store have different access characteristics. http://martinfowler.com/bliki/PolyglotPersistence.html

http://martinfowler.com/bliki/PolyglotPersistence.html
http://martinfowler.com/bliki/PolyglotPersistence.html


8

what might Polyglot Persistence look like?

Redis

User sessions

MongoDB

Product Catalog

RDBMS

Financial Data

RDBMS

Reporting

Riak

Shopping Cart

Cassandra

Analytics

Neo4J

Recomendations

Cassandra

User activity logs

Speculative Retailers Web Application

Lots of reads, infrequent 
writes. Products make 
natural aggregate

Rapid access for reads 
and writes. No need to 
be durable

Needs transactional 
updates. Tabular 
structure fits data

SQL interfaces well with 
reporting tools

Large-scale analytics on 
large cluster

Needs high availability across 
multiple locations. Can merge 
inconsistent writes

Rapidly traverse links 
between friends, product 
purchases, and ratings

High volume of writes on 
multiple nodes

This is a very 
hypothetical example, 
we would not make 
technology 
recommendations 
without more 
contextual information



9

polyglot persistence provides lots of new 
opportunities for enterprises

i.e. problems
Decisions 

We have to decide what data 
storage technology to use, rather 
than just go with relational

Immaturity 
NoSQL tools are still young, and 
full of the rough edges that new 
tools have. 
Furthermore since we don’t have 
much experience with them, we 
don’t know how to use them well, 
what the good patterns are, and 
what gotchas are lying in wait.

Organizational Change 
How will our data groups react to 
this new technology?

Dealing with Eventual Consistency 
Paradigm 

How will different stakeholders in the 
enterprise data deal with data that 
could be stale and how do you 
enforce rules to sync data across 
systems



10

what kinds of projects are candidates for 
polyglot persistence?

Strategic and

rapid time to market

and/or

data intensive

Most software projects are utility 
projects, i.e. they aren’t central to 
the competitive advantage of the 
company. Utility projects should not 
take on the risk and staffing 
demands that polyglot persistence 
brings as the potential benefits are 
not there.

If you need to get to market quickly, 
then you need to maximize 
productivity of your development 
team. If appropriate, polyglot 
persistence can remove significant 
drag.

Data intensiveness can come in 
various forms

lots of data
high availability
lots of traffic: reads or writes
complex data relationships

Any of these may suggest non-
relational storage, but its the exact 
nature of the data interaction that 
will suggest the best of the many 
alternatives.



11

for more information…

On the Web
We are both active writers on our websites. 
Martin writes at http://martinfowler.com and 
Pramod at http://www.sadalage.com/.

Forthcoming Book
We are currently working on a introductory book 
to NoSQL databases, to be titled: NoSQL 
Distilled (see http://martinfowler.com/bliki/
NosqlDistilled.html)

Consulting and Delivery
ThoughtWorks has carried out several projects 
delivering production systems using NoSQL 
technologies. To see if NoSQL is a good fit for 
your needs, and how we can help your delivery, 
contact your local ThoughtWorks office, which 
you can find at http://thoughtworks.com

http://martinfowler.com
http://martinfowler.com
http://livepage.apple.com/
http://livepage.apple.com/
http://martinfowler.com/bliki/NosqlDistilled.html
http://martinfowler.com/bliki/NosqlDistilled.html
http://martinfowler.com/bliki/NosqlDistilled.html
http://martinfowler.com/bliki/NosqlDistilled.html
http://thoughtworks.com
http://thoughtworks.com

