Editor: Martin Fowler

ThoughtWorks

fowler@acm.org

Yet Another Optimization
Article

Martin Fowler

20

IEEE SOFTWARE

his is a troubling column to write. I

hadn’t planned to write on optimiza-

tion, because what I have to say has

already been said numerous times.

Yet, when I give talks, I find there’s

still a surprising number of people
who don’t know, or at least don’t follow, the
advice ’'m about to give. So, here goes.
(Many of you have probably seen this ad-
vice before—my thought to you
is to ponder why I need to say
this again.)

First, performance matters. Al-
though relying on Moore’s law to
get us out of slow programs has
its merits, I find it increasingly an-
noying when I get a new version
of a program and must upgrade
my hardware for it to work ac-
ceptably. The question is, “How
do we achieve a fast program?”

For many programmers, performance is
something you pay continuous attention to
as you program. Every time you write a
fragment of code, you consider the perfor-
mance implications and code the program to
maximize performance. This is an obvious
technique—pity it works so badly.

Performance is not something you can
work on in this way. It involves specific dis-
cipline. Some performance work comes
from architectural decisions, some from a
more tactical optimization activity. But
what both share is the fact that it is diffi-
cult to make decisions about performance
from just looking at the design. Rather, you
have to actually run the code and measure
performance.

May/June 2002

Optimizing an existing program follows
a specific set of steps. First, you need a pro-
filer—a program that can analyze how
much time your program spends in its var-
ious parts. Software performance has an
80/20 rule: 80 percent of the program’s
time is spent on about 20 percent of the
code. Trying to optimize performance in
the 80 percent of code is futile, so the first
order of business is to find that 20 percent
of code. Trying to deduce where the pro-
gram will spend its time is also futile. I
know plenty of experienced programmers
who always get this wrong. You have to
use a profiler.

To give the profiler something to chew on,
perform some kind of automated run that
reasonably simulates the program under its
usual conditions. An automated test suite is a
good starting point, but make sure you simu-
late the actual conditions. My colleague Dave
Rice has a rule: “Never optimize a multiuser
system with single-user tests.” Experience has
taught us that a multiuser database system
has very different bottlenecks than a single
user system—often focused around transac-
tion interactions. The wrong set of tests can
easily lead you to the wrong 20 percent of
code.

Once you’ve found your bottlenecks,
you have two choices: speed up the slow
things or do the slow things less often. In ei-
ther case, you must change the software.
This is where having a well-designed piece
of software really helps. It’s much easier to
optimize cohesive, loosely coupled mod-
ules. Breaking down a system into many

0740-7459/02/$17.00 © 2002 IEEE

small pieces lets you narrow down
the bottlenecks. Having a good auto-
mated test suite makes it easier to
spot bugs that might slip in during
optimization.

It’s worth knowing about various
optimization tricks, many of which
are particular to specific languages
and environments. The most impor-
tant thing to remember is that the
tricks are not guaranteed to work—as
the saying goes, “Measure twice, cut
once.” Unlike a tailor, however, you
measure before and after you’ve ap-
plied the optimization. Only then do
you know if it’s had any effect. It’s re-
vealing how often an optimization has
little—or even a negative—effect. If
you make an optimization and don’t
measure to confirm the performance
increase, all you know for certain is
that you’ve made your code harder to
read.

This double measurement is all the
more important these days. With opti-
mizing compilers and smart virtual
machines, many of the standard opti-
mizing techniques are not just ineffec-
tive but also counterintuitive. Craig
Larman really brought this home
when he told me about some com-
ments he received after a talk at
JavaOne about optimization in Java.
One builder of an optimizing virtual
machine said, in effect, “The com-
ments about thread pools were good,
but you shouldn’t use object pools be-
cause they will slow down our VM.”
Then another VM builder said, “The
comments about object pools were
good, but you shouldn’t use thread
pools because they slow down our
VM.” Not only does this reinforce the
need to measure with every optimiza-
tion change, it also suggests that you
should log every change made for op-
timization (a comment tag in the
source code is a good option) and
retest your optimizations after up-
grading your compiler or VM. The
optimization you did six months ago
could be your bottleneck today.

All of this reinforces the key rule
that first you need to make you pro-
gram clear, well factored, and nicely
modular. Only when you’ve done
that should you optimize.

Some exceptions

Although most performance issues
are best dealt with in these kinds of
optimizations, at times other forms
of thinking are important—for ex-
ample, during early architectural
stages, when you’re making decisions
that will be costly to reverse later.
Again, the only way to really under-
stand these performance issues is to
use measurements. In this case, you
build exploratory prototypes to per-
form crude simulations of the envi-
ronments with which you’re going to
work and to get a sense of the rela-
tive speeds. It’s tricky, of course, to
get a good idea of what the actual en-
vironment might be, but then it’s
likely that everything you’re working
with will be upgraded before you go
live anyway. Experiments are still
much better than wild guesses.

There are also some cases where
there are broad rules about slow
things. An example I always come
across is the slowness of remote pro-
cedure calls. Because remote calls are
orders of magnitude slower than in-
process calls, it’s important to mini-
mize them, which greatly affects
overall design. However, this doesn’t
trump measuring. I once came across
a situation where people optimize re-
mote methods only to find their bot-
tlenecks were elsewhere. However,
minimizing remote calls has proven
to be a solid rule of thumb.

If you make an
optimization and
don’t measure to

confirm the performance
Increase, all you know
for certain is that
you've made your code
harder to read.

Some have taken this further, com-
ing up with performance models that
you can use to assess different archi-
tectural designs. Although this can be
handy, it’s difficult to take it too far.
It all depends on how good the per-
formance model is, and people usu-
ally cannot predict the key factors,
even at a broad level. Again, the only
real arbiter is measurement.

In the end, however, performance
is not an absolute. Getting a program
to run faster costs money, and it’s a
business decision whether to invest in
a quicker program. One value of an
explicit optimization phase is that
the cost of getting fast performance is
more explicit, so businesses can trade
it against time to market or more fea-
tures. Much of the reason why I
curse at slow software is because it
makes good business sense for the

builder.

s I’ve said, much of this advice—

in particular, the advice to write a

good clean program first and op-
timize it later—is well worn. (For a
longer description of this approach,
read Chapters 28 and 29 of Steve
McConnell’s Code Complete, Mi-
crosoft Press, 1993.) Good quotes
about the perils of premature opti-
mization have been around for over
20 years. The pity is that some peo-
ple still object when I call the same
query method twice in a routine. For
everyone who finds nothing new in
this column, there exists another
challenge—how to make it so there is
no need to rewrite it in 10 years. @

Martin Fowler is the chief scientist for ThoughtWorks, an In-
ternet systems delivery and consulting company. Confact him at
fowler@acm.org.

May/June 2002 1EEE SOFTWARE 21

