
0 7 4 0 - 7 4 5 9 / 0 5 / $ 2 0 . 0 0 © 2 0 0 5 I E E E J u l y / A u g u s t 2 0 0 5 I E E E S O F T W A R E 6 5

design
E d i t o r : M a r t i n F o w l e r ■ T h o u g h t Wo r k s ■ f o w l e r @ a c m . o r g

A
gile methods—more specifically, test-
driven development practices1—have
begun to raise the software industry’s
awareness of automated acceptance
testing. We now recognize that armies
of manual testers slogging through

reams of tedious, manually executed test scripts,
under schedule pressure at the end of a release,
don’t ensure quality.

Many tools can be purchased
to help testers write automatic
scripts for testing the system
through its user interface.
Such tools act like robots
programmed to behave like
testers—they push buttons, se-
lect menu items, check boxes,
enter data into fields, and in-
spect the screens. Unfortunately,
testing through the UI is slow,

opaque, and dangerous. One of my clients had
to run over 10,000 acceptance tests, and run-
ning them through the UI took him several days
using dozens of machines. Furthermore, the
tests were written in a code-like language that
made them difficult to understand. Over time,
he lost track of what each test was trying to ver-
ify: all he knew was that all 10,000 tests had to
pass. Even tiny changes to the UI caused
dozens, if not hundreds, of tests to fail or be-
come inoperable. In the end, he found it impos-
sible to upgrade and improve his outmoded UI.

Over a century ago, the telephone company
solved a similar problem by designing tele-
phone switches with built-in test access. Such

access, called a test bus, eventually let the tele-
phone company automatically test every phone
line at night and fix failures and degradations
long before subscribers learned about them.

Software producers have started adopting a
similar strategy, architecting their software
systems with built-in test buses. They also use
tools such as Fit and FitNesse (www.fitnesse.
org) to specify their tests in a simple-to-under-
stand specification language that business peo-
ple can read.2 However, setting up automated
acceptance testing requires at least three major
architectural separations.

Bypassing the UI
In a software system, a test bus is a set of

APIs that provides convenient access to unit
and acceptance tests. These tests specify system
behavior—unit tests specify module behavior
and acceptance tests specify feature behavior.

A test bus’s existence in a system means that
the appropriate structures exist in the applica-
tion to let tests access the modules and subsys-
tems whose behavior and structure they’re speci-
fying. For example, writing tests that bypass the
UI and exercise the underlying business rules re-
quires an API that both the UI and tests can use
to invoke those business rules. Moreover, that
API must be independent of the UI (see figure 1).

Figure 1 clearly shows that the tests are an
alternate form of UI. They access the same API
that the UI uses, so they can drive the system
through all of its revenue-bearing operations
and specify the required behaviors in detail.

However, some UIs are very rich, and busi-

The Test Bus Imperative:
Architectures That Support Automated Acceptance Testing

Robert C. Martin

6 6 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

DESIGN

ness rules tend to find their way into
them. For example, some systems vali-
date data or perform significant calcu-
lations in the UI. This is especially true
in client-server and Web-based systems.
Some common design strategies make
such business rules difficult to test.
However, if the development team has
decided that testability is an architec-
tural imperative, then they must pro-
vide test access to those business rules.
A common solution is to create an-
other API in the UI that separates the
presentation, validation, and calcula-
tion rules from the UI’s low-level de-
tails (see figure 2).

Clearly, this kind of API constrains the
UI design and how designers can use
client-side tools such as JavaScript. De-
signers must find a way to let tests con-
veniently access these client-side business
rules by separating them from the UI so
that a test bus API can invoke them. Sep-
arating the UI and business rules has long
been a goal of good design: “The Model-
View Separation principle states that
model (domain) objects should not have
direct knowledge of view (presentation)
objects.”3 The test bus imperative turns
that good-design goal into a requirement.

Isolating the test bus
The tests written against each API

should test only those things governed
by that API. Tests written against the
presentation API shouldn’t test busi-
ness rules that the business rule API
governs. The arguments for this are
precisely the same as those for not test-
ing through the UI. If you test the busi-
ness rules through the presentation
API, then the presentation layer be-
comes difficult to change, because such
changes break the tests.

Here again we see how the test bus
imperative enforces good design goals.
Decoupling subsystems and layers has

always been a hall-
mark of good design,
but when automated
tests are used to spec-
ify the system, this
decoupling becomes
a requirement, not
just a goal. (A partic-
ularly insightful dis-
cussion of this ap-
pears elsewhere.4)

Some end-to-end
tests are certainly nec-
essary. Such tests de-
scribe how separate
system modules inter-
play. However, the
vast majority of the
tests must be written
against their respec-
tive subsystems.

Additionally, an
automated test envi-
ronment is useful only
to the extent that it’s

convenient to run. If running the auto-
mated suite takes eight days, develop-
ers won’t run it very often. The less of-
ten it runs, the more defects will
accumulate between runs. Then the de-
velopers will need to execute more long
runs to verify that they’ve fixed those
defects. However, if running the entire
suite of tests takes less than an hour,
the tests can run several times a day.
Defects don’t accumulate in the system
because developers quickly find and re-
pair them.

Running these tests through isolated
APIs (rather than the UI) drastically in-
creases the test runs’ speed and makes
it feasible to run the tests at every
build, several times per day.

Separating the database
The database is another cause of slow

tests. Operations on large databases can
be slow, whereas the same operations on
small databases can be much faster. One
simple strategy to speed testing is to run
the tests on a series of small canned data-
bases. The test system creates these data-
bases just before the tests run and deletes
them just after.

Even small databases are marshaling
data on and off rotating magnetic disks.
These operations are orders of magni-
tude slower than equivalent operations
in RAM. So, another strategy to keep the
tests running quickly is to separate the
database from the application and re-
place it with a database that exists solely
in RAM.

Figure 3 shows that we can achieve
this separation by creating another API
that the business rules can use and that
either a real database or RAM database
can implement.

Speed isn’t the only benefit of such a
separation. Running test cases in RAM
lets the tests completely control the
database’s content. Tests begin with
blank databases and invoke special
setup functions that put the RAM data-
base into a known state. Moreover, if
tests run on a RAM database, the
changes they make to that data aren’t
persisted. This makes the tests both in-
dependent and repeatable.

Test independence and repeatability
let us quickly isolate and diagnose prob-

Business rule API

Business rules

UI Tests

Figure 1. A testable system includes
a test bus that can access the API
independent of the UI.

Presentation API

Client-side presentation,
validation, calculation

Business rule API

Business rules

UI Presentation tests

Business rule tests

Figure 2. The presentation API separates the
presentation, validation, and calculation rules from
the UI’s low-level details. This helps ensure developers
can test all the business rules—even those that
extend into the UI.

J u l y / A u g u s t 2 0 0 5 I E E E S O F T W A R E 6 7

lems. Furthermore, when we can con-
veniently run any individual test or
group of tests over and over, in any or-
der, it enhances the diagnoses.

When tests depend on each other,
we must run the entire suite every time
we want to run a particular test. More-
over, if a test fails, the downstream
tests necessarily fail, greatly impeding
problem isolation and diagnosis.

Once again, we see the relationship
between good design principles and the
test bus imperative. Separating the ap-
plication from the database has long
been a principle of good design: Ac-
cording to Martin Fowler, “It is wise to
separate SQL access from domain logic
and place it in separate classes.”5 Fur-
thermore, Ivar Jacobson says, “To
make the design minimally affected by
the DBMS, as few parts of our system
as possible should know about the
DBMS’s interface.”6 Indeed, many
frameworks and layers have been writ-
ten to assist in this separation. The
need for test speed, repeatability, and
independence makes this separation an
essential architectural requirement.

Separation in the small
In a truly test-driven environment,

the need for separation extends below
the major subsystems to the modules,
classes, and methods. As business ana-
lysts, quality assurance professionals,
and testers write acceptance tests, and
developers write unit tests, the need be-
comes acute to separate the software
into units that those tests can indepen-
dently access and operate. This greatly
increases the need for good object-
oriented design skills among the archi-
tects, designers, and developers. Ob-
ject-oriented design provides the tools,
principles, and patterns that enable the
kinds of separation that automated
testing requires.

T he software industry’s increased
awareness of automated testing’s ben-
efits and potentials is good news for

an industry that for decades has been be-
set by quality and productivity issues. In
light of the fact that many of our client
industries such as telephony, electronics,

and manufacturing have been designing
test access into their products as a stan-
dard part of their process for over a cen-
tury, it’s ironic that we’ve come to this
awareness so late.

More ironic still is the fact that
when we make testing an architectural
imperative, it forces us to follow the
principles of good design and decouple
our systems.

References
1. K. Beck, Test Driven Development, Addison-

Wesley, 2003.
2. R. Mugridge and W. Cunningham, Fit for De-

veloping Software, Addison-Wesley, 2005.
3. C. Larman, Applying UML and Patterns,

Prentice Hall, 2002, p. 472.
4. M. Feathers, The Humble Dialog Box, 2002,

www.objectmentor.com/resources/articles/
TheHumbleDialogBox.pdf.

5. M. Fowler, Patterns of Enterprise Application
Architecture, Addison-Wesley, 2003, p. 34.

6. I. Jacobson, Object Oriented Software Engi-
neering, Addison-Wesley, 1992, p. 276.

Robert C. Martin (Uncle Bob) is the founder, CEO,
and president of Object Mentor. Contact him at unclebob@
objectmentor.com.

DESIGN

Database API

Business rules

RAM databaseDatabase

Figure 3. Creating another API that
the business rules can use and that
a real database or RAM database can
implement separates the database
from the application. We can then
replace the database with one that
exists solely in RAM to keep the
tests running quickly. (The smaller
arrow represents a UML inheritance
relationship.)

Writers
For detailed information on submitting
articles, write for our Editorial Guidelines
(software@computer.org) or access
www.computer.org/software/author.htm.

Letters to the Editor
Send letters to

Editor, IEEE Software
10662 Los Vaqueros Circle
Los Alamitos, CA 90720
software@computer.org

Please provide an email address or daytime
phone number with your letter.

On the Web
Access www.computer.org/software for
information about IEEE Software.

Subscribe
Visit www.computer.org/subscribe.

Subscription Change of Address
Send change-of-address requests for magazine
subscriptions to address.change@ieee.org.
Be sure to specify IEEE Software.

Membership Change of Address
Send change-of-address requests for IEEE
and Computer Society membership to
member.services@ieee.org.

Missing or Damaged Copies
If you are missing an issue or you received a
damaged copy, contact help@computer.org.

Reprints of Articles
For price information or to order reprints,
send email to software@computer.org or
fax +1 714 821 4010.

Reprint Permission
To obtain permission to reprint an article,
contact the Intellectual Property Rights
Office at copyrights@ieee.org.

How to
Reach Us
How to

Reach Us

