Editor: Martin Fowler

ThoughtWorks

fowler@acm.org

Public versus Published
Interfaces

Martin Fowler

18

IEEE SOFTWARE

ne of the growing trends in software

design is separating interface from im-

plementation. The principle is about

separating modules into public and

private parts so that you can change

the private part without coordinating
with other modules. However, there is a fur-
ther distinction—the one between public and
published interfaces. This distinction is im-
portant because it affects how you
work with the interface.

Let’s assume I'm writing an ap-
plication in a modern modular
language—to make things more
concrete, let’s assume this lan-
guage is Java. My application thus
consists of several classes (and in-
terfaces), each of which has a pub-
lic interface. This public interface
of a class defines a group of methods that any
other class in the system can invoke.

While Pm enhancing a public method, I re-
alize that one of its parameters is redundant—
I don’t need to use it in the method (maybe I
can get that value through some other route
or maybe I just don’t need it anymore). At this
point, I can eliminate that value from the
method signature, clarifying the method and
potentially saving work for its callers. Because
this method is public, any class in the system
can call it. Should I remove the parameter?

In this case, I would argue yes, because
there are benefits and it isn’t difficult. Al-

March/April 2002

though the method might be used anywhere,
I can easily find the users with a search tool.
If T have one of the new breeds of refactor-
ing tools (see www.refactoring.com for de-
tails) available for Java, I can do it with a
simple menu click—the tool will then auto-
matically update all the callers. So, changing
a public method isn’t a big deal.

However, things rapidly change if T put
that software out on the Web as a compo-
nent, and other people, whom I don’t know,
start building applications on top of it. If I
now delete the parameter, everybody else’s
code will break when T upgrade. Now I must
do something a little more elaborate. I can
produce the new method with one less para-
meter but keep the old method—probably
recoding the old method to call the new one.
I mark the old method as deprecated, assum-
ing people will move the code over and that
I can change it in the next release or two.

The two cases are quite different, yet
there’s nothing in the Java language to tell
the difference—a gap that’s also present in a
few other languages. Yet there’s something
to be said for the public—published distinc-
tion being more important than the more
common public—private distinction.

The key difference is being able to find
and change the code that uses an interface.
For a published interface, this isn’t possible,
so you need a more elaborate interface
update process. Interface users are either
callers or are classes that subclass or imple-
ment an interface.

0740-7459/02/$17.00 © 2002 IEEE

Recognizing the difference be-
tween public and published leads to
an important set of consequences.

Don’t treat interfaces as published
unless they are

If you need to change an interface
and can find and change all users,
then don’t bother going through all
the forwarding and deprecation gam-
bits. Just make the change and up-
date the users.

Don’t publish interfaces inside a team

I once suggested to somebody
that we change a public method,
and he objected because of the prob-
lems caused by its being published.
The real problem was that although
there were only three people on the
team, each developer treated his in-
terfaces as published to the other
two. This is because the team used a
strong form of code ownership in
which each module was assigned to
a single programmer and only that
programmer could change the mod-
ule’s code. P’m sympathetic to code
ownership—it encourages people to
monitor their code’s quality—but a
strong code ownership model such
as this one causes problems by forc-
ing you to treat interperson inter-
faces as published.

I encourage a weaker ownership
model in which one person is re-
sponsible for the module but other
people can make changes when nec-
essary. This lets other developers do
things such as alter calls to changed
methods. (You can also use collec-
tive code ownership—where anyone
can change anything—to avoid in-
ternal publishing.) This kind of
ownership usually requires a config-
uration management system that
supports concurrent writers (such as
CVS) rather than one that uses pes-
simistic locking.

There is a limit to how big a team
you can run without some form of
internal publishing, but I would err
on the side of too little publishing. In
other words, assume you don’t need
to publish interfaces, and then adjust
if you find this causes problems.

Publish as little as you can as late as
you can

Because publishing locks you into
the slower cycle of changes, limit
how much you publish. This is where
a language’s inability to distinguish
between public and published be-
comes an issue. The best you can do
is declare some modules to be the in-
terface and then counsel your soft-
ware users not to use the other mod-
ules, even if they can see them. Keep
these interfaces as thin as you can.
Publish as late as possible in the de-
velopment cycle to give yourself time
to refine the interfaces. One strategy
is to work closely with one or two
users of your components—users
who are friendly enough to cope with
sharp interface changes—before you
publish to the masses.

Try to make your changes additions

In addition to distinguishing be-
tween published and public interfaces,
we can also identify two types of in-
terface changes. Generally, changes
can alter any aspect of an interface.
However, there are some changes that
only cause additions to an interface,
such as adding a method. Additions
won’t break any of the interface’s
clients—existing clients have no prob-
lem using the old methods. Conse-
quently, when you make a change, it’s
worth considering whether you can
recast it into an addition. For exam-
ple, if you need to remove a parame-

There’s something
to be said for the
public—published
distinction being

more important than
the more common
public—private
distinction.

ter from a method, instead of chang-
ing the method, try adding a new
method without the parameter. That
way, you get an addition rather than a
general alteration, and your clients re-
main compatible.

Additions can still cause prob-
lems if outside groups have their
own implementation of your inter-
face. If that happens, even adding a
method breaks the alternative im-
plementation. Thus, some compo-
nent technologies, such as COM,
use immutable interfaces. With an
immutable interface, once it’s pub-
lished, you guarantee not to change
it. If you want to change the inter-
face, you must create a second inter-
face, and components can then sup-
port this interface at their leisure.
It’s not the ideal scheme, but it cer-
tainly has its merits.

would like to see the public—

published distinction appear more

in languages and platforms. It’s
also interesting that environments
don’t tend to provide the facilities to
evolve interfaces. Some can deprecate
a method that’s due to be removed:
Eiffel does this as part of the lan-
guage, and Java does it (but as part
of the built-in documentation). I
haven’t seen anyone add a marker to
a method that warns implementers of
something that’s going to be added
or would let you add something to an
interface in a provisional way.

That’s part of a more general issue
in software platforms. So far, plat-
forms haven’t sufficiently understood
that software is supposed to be soft
and thus needs facilities that allow
change. In recent years, we’ve taken
more steps in this direction with
component-packaging systems, but
these are just the early steps. @

Martin Fowler is the chief scientist for ThoughtWorks, an
Internet systems delivery and consulting company. Contact him
at fowler@acm.org.

March/April 2002 1EEE SOFTWARE 19

