
0 7 4 0 - 7 4 5 9 / 0 1 / $ 1 0 . 0 0 © 2 0 0 1 I E E E M a y / J u n e 2 0 0 1 I E E E S O F T W A R E 89

design
E d i t o r : M a r t i n F o w l e r , T h o u g h t Wo r k s ■ f o w l e r @ a c m . o r g

T
he Pattern Almanac 2000 (Addison-
Wesley, 2000) lists around 500 soft-
ware-related patterns—and given this
reading list, the curious developer has
no time to program! Of course, there
are underlying, simplifying themes and

principles to this pattern plethora that de-
velopers have long considered and dis-
cussed. One example is Larry Constantine’s

coupling and cohesion guidelines
(see “Structured Design,” IBM
Systems J., vol. 13, no. 2, 1974).
Yet, these principles must contin-
ually resurface to help each new
generation of developers and ar-
chitects cut through the apparent
disparity in myriad design ideas
and help them see the underlying
and unifying forces.

One such principle, which
Bertrand Meyer describes in Ob-

ject-Oriented Software Construction (IEEE
Press, 1988), is the Open–Closed Principle:
Modules should be both open (for extension
and adaptation) and closed (to avoid modifi-
cation that affect clients). OCP is essentially
equivalent to the Protected Variation pattern:
Identify points of predicted variation and cre-
ate a stable interface around them. Alistair
Cockburn did not know of OCP when he
first wrote about PV (see “Prioritizing Forces
in Software Design,” Patterns Languages of
Program Design, vol. 2, Addison-Wesley,
1996). Furthermore, OCP is what David Par-
nas really meant by information hiding (see
“On the Criteria to Be Used in Decomposing
Systems into Modules” Comm. ACM, vol.
12, no. 2, Dec. 1972).

OCP and PV formalize and generalize a
common and fundamental design principle
described in many guises. OCP and PV are
two expressions of the same principle—
protection against change to the existing
code and design at variation and evolution
points—with minor differences in emphasis.
I am nominating the term protected varia-
tion for general use, as it is short and clear.

In OCP, the term module includes all dis-
crete software elements, including methods,
classes, subsystems, applications, and so forth.
Also, the phrase “closed with respect to X”
means that clients are not affected if X
changes. For example, “The class is closed
with respect to instance field definitions.” PV
uses the term interface in the broad sense of an
access view—not exactly a Java or COM in-
terface, for example.

Information hiding is PV,
not data encapsulation

“On the Criteria To Be Used in Decom-
posing Systems Into Modules” is a classic
that is often cited but seldom read. In it, Par-
nas introduces information hiding. Many
people have misinterpreted the term as mean-
ing data encapsulation, and some books er-
roneously define the concepts as synonyms.

Parnas intended it to mean hide informa-
tion about the design from other modules,
at the points of difficult or likely change. To
quote his discussion of information hiding
as a guiding design principle:

We propose instead that one begins with a
list of difficult design decisions or design
decisions which are likely to change. Each

Protected Variation:
The Importance of Being
Closed
Craig Larman

90 I E E E S O F T W A R E M a y / J u n e 2 0 0 1

DESIGN

module is then designed to hide
such a decision from the others.

That is, Parnas’s information hiding is
the same principle expressed in PV or
OCP—it is not simply data encapsula-
tion, which is but one of many tech-
niques to hide design information.

However, the term has been so
widely reinterpreted as a synonym for
data encapsulation that it is no longer
possible to use it in its original sense
without misunderstanding it. This arti-
cle should be called, “The Importance
of Information Hiding,” in honor of
Parnas’s description of the PV princi-
ple. Dijkstra earlier alludes to the prin-
ciple in the “THE” project, but Parnas
gave it focus and shape (Dijkstra, “The
Structure of the ‘THE’ Multiprogram-
ming System,” Comm. ACM, 1968).

Mechanisms motivated by PV
PV is a root principle motivating

most of the mechanisms and patterns
in programming and design that pro-
vide flexibility and protection from
variations. Here are some examples.

Familiar PV mechanisms
PV motivates data encapsulation,

interfaces, polymorphism, indirec-
tion, and standards. Components
such as brokers and virtual machines
are complex examples of indirection.

Uniform access
Languages such as Ada, Eiffel, and

C# support a syntactic construct to
express both a method and field ac-
cess in the same way. For example,
aCircle.radius might invoke a ra-
dius():float method or directly refer
to a public field, depending on the
definition of the class. You can
change public fields to access meth-
ods without changing the client code.

Data-driven designs
Data-driven designs cover a broad

family of techniques, including reading
codes, values, class file paths, class
names, and so forth, from an external
source in order to change the behavior
of or “parameterize” a system in some
way at runtime. Other variants include
style sheets, metadata for object-rela-

tional mapping, property files, reading
in window layouts, and much more.
The system is protected from the im-
pact of data, metadata, or declarative
variations by externalizing the variant,
reading the behavior-influencing data
in, and reasoning with it.

Service lookup
Service lookup includes techniques

such as using naming services (for ex-
ample, JNDI) or traders to obtain a
service (such as Jini). This approach
uses the stable interface of the lookup
service to protect clients from varia-
tions in the location of services. It is a
special case of data-driven designs.

Interpreter-driven designs
Interpreter-driven designs include

rule interpreters that execute rules read
from an external source, script or lan-
guage interpreters that read and run
programs, virtual machines, neural net-
work engines that execute nets, con-
straint logic engines that read and rea-
son with constraint sets, and so forth.
This approach lets you change or para-
meterize a system’s behavior through
external logic expressions. The system
is protected from the impact of logic
variations by externalizing the logic,
reading it in (for example, rules or a
neural net), and using an interpreter.

Reflective or metalevel designs
An example of a reflective or meta-

level design includes using the java.
beans.Introspector to obtain a Bean-
Info object, asking for the getter
Method object for bean property X
(that is, the method getX), and calling
Method.invoke. Reflective algorithms
that use introspection and metalan-

guage services protect the system from
the impact of logic or external code
variations. We could also consider this
a special case of data-driven designs.

Pick your battles
As an example of PV’s application,

a client explained that the logistical
support application used by an airline
was a maintenance headache. There
was frequent modification of the
business logic to support the logistics.
How do you protect the system from
variations at this point? From the
mechanisms to support PV (data en-
capsulation, interfaces, indirection,
…), a rule-based design was chosen:
A rules engine was added to the sys-
tem, and an external rule editor let
the subject matter experts update the
rules without requiring changes to the
source code of the system.

Low coupling and protection
against variations is not motivated in
all areas. You must pick your battles
in design, be they at the macro-archi-
tectural level or the humble instance
field. A good designer can identify the
likely points of instability or variation
and apply PV to those points but not
others. Otherwise, effort is wasted
and complexity may arise (and with
it, the chance for defects).

For example, I recall being surprised
by the occasional use of static public fi-
nal fields in the Java technology li-
braries (after spending many years with
the Smalltalk libraries). Some might be
poorly conceived, but some, such as
the Color static fields red, black, white,
and so forth, are extremely stable; the
likelihood of instability is so low that
making them private and adding ac-
cessing methods is just object purism.

As a counterexample, I know of
a pager-message-handling system in
which the architect added a fancy
scripting language and interpreter to
support some flexibility. However, dur-
ing rework in an incremental release,
the complex (and inefficient) scripting
was removed—it wasn’t needed.

Judicious PV and the
Diamond Sutra

Constantine’s guideline to design
with low coupling is a truly core prin-

You must
pick your battles

in design, be they at the
macro-architectural
level or the humble

instance field.

M a y / J u n e 2 0 0 1 I E E E S O F T W A R E 91

DESIGN

ciple of design, and it can be argued
that PV derives from it. We can priori-
tize our goals and strategies as follows:

1. We wish to save time and money,
reduce the introduction of new
defects, and reduce the pain and
suffering inflicted on overworked
developers.

2. To achieve this, we design to min-
imize the impact of change.

3. To minimize change impact, we de-
sign with the goal of low coupling.

4. To design for low coupling, we
design for PVs.

Low coupling and PV are just one
set of mechanisms to achieve the goals
of saving time, money, and so forth.
Sometimes, the cost of speculative fu-
ture proofing to achieve these goals
outweighs the cost incurred by a sim-
ple, highly coupled “brittle” design
that is reworked as necessary in re-
sponse to true change pressures. That
is, the cost of engineering protection
at evolution points can be higher than
reworking a simple design.

My point is not to advocate rework

and brittle designs. If the need for
flexibility and PV is immediately ap-
plicable, then applying PV is justified.

However, if you’re using PV for
speculative future proofing or reuse,
then deciding which strategy to use is
not as clear-cut. Novice developers
tend toward brittle designs, and inter-
mediates tend toward overly fancy
and flexible generalized ones (in ways
that never get used). Experts choose
with insight—perhaps choosing a sim-
ple and brittle design whose cost of
change is balanced against its likeli-
hood. The journey is analogous to the
well-known stanza from the Diamond
Sutra:

Before practicing Zen, mountains
were mountains and rivers were
rivers.

While practicing Zen, mountains
are no longer mountains and
rivers are no longer rivers.

After realization, mountains are
mountains and rivers are rivers
again.

PV is a fundamental design principle
that applies to everything from the
largest architectural concerns to the
smallest coding decision. Furthermore,
it underlies the motivation and advice
of most other patterns and principles.
As Parnas explained 30 years ago—
and as has resurfaced in the writings of
Meyer and Cockburn—each genera-
tion of software developers needs help
seeing mountains as mountains again
—especially after four years of com-
puter science and 500 patterns!

Acknowledgments
OCP, as described here, was brought to my

attention by Bob Martin in The Open-Closed
Principle: C++ Report, SIGS Publications,
1996.

Craig Larman is director of process and methodology at
Valtech, an international consulting group. He holds a BSc and
an MSc in computer science, with research emphasis in artificial
intelligence. He is the author of Applying UML and Patterns: An
Introduction to Object-Oriented Analysis and Design, and he is
writing a second edition that will include OCP/PV as one of the
fundamental design principles. He is a member of the IEEE and
ACM. Contact him at clarman@acm.org.

Subscription Change of Address
Send change-of-address requests for magazine subscriptions to
address.change@ieee.org. Be sure to specify IEEE Software.

Membership Change of Address
Send change-of-address requests for the membership directory to
help@computer.org.

Missing or Damaged Copies
If you are missing an issue or you received a damaged copy, contact
help@computer.org.

Reprints of Articles
For price information or to order reprints, send email to
software@computer.org or fax +1 714 821 4010.

Reprint Permission
To obtain permission to reprint an article, contact William Hagen,
IEEE Copyrights and Trademarks Manager, at whagen@ieee.org.

Writers
For detailed information on submitting articles, write for
our Editorial Guidelines (software@ computer.org), or
access computer.org/software/author.htm.

Letters to the Editor
Send letters to

Letters Editor
IEEE Software
10662 Los Vaqueros Circle
Los Alamitos, CA 90720
software@computer.org

Please provide an email address or daytime phone num-
ber with your letter.

On the Web
Access computer.org/software for information about
IEEE Software.

How to
Reach Us
How to

Reach Us

