
1 4 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 4 / $ 2 0 . 0 0 © 2 0 0 4 I E E E

design
E d i t o r : M a r t i n F o w l e r ■ T h o u g h t Wo r k s ■ f o w l e r @ a c m . o r g

T
he activity of “design” includes many
things, but certainly one of the most im-
portant aspects is interface specification.
Interfaces determine which aspects of a
component are accessible and to whom;
they thus determine encapsulation. Inter-

faces specify what functionality (data, proper-
ties, methods, and so forth) is avail-
able to clients. Interfaces reflect
how a system is broken down into
its constituent components.

Interfaces are everywhere. They’re
the “I” in GUI and API, but they’re
much more pervasive than that.
Classes and structs have interfaces;
functions and methods have inter-
faces; templates and namespaces
have interfaces; subsystems and
modules have interfaces; libraries

and applications have interfaces. Regardless of
your role in the development of a software sys-
tem, it almost certainly involves some interface
design, so it’s helpful to have some heuristics
that indicate when you’re doing it well—or
poorly. Over time, I’ve come to the conclusion
that the most important general interface de-
sign guideline is this:

Make interfaces easy to use correctly and
hard to use incorrectly.

This guideline leads to a conclusion that some
developers find unsettling.

Interface designers must take
responsibility

Let’s make the reasonable assumption that
your clients—the people using your inter-
faces—are trying to do a good job. They’re
smart, they’re motivated, they’re conscientious.
They’re willing to read some documentation to
help them understand the system they’re using.
They want things to behave correctly.

That being the case, if they make a mistake
when using your interface, it’s your fault.
We’re assuming they’re doing their best—they
want to succeed. If they fail, it’s because you
let them. So, if somebody uses your interface
incorrectly, either they’re working hard at it
(less likely) or your interface allowed them to
do something easy that was not correct (more
likely). This puts the shoe on the foot not used
to wearing it: it means that responsibility for
interface usage errors belongs to the interface
designer, not the interface user.

In a perfect world, adherence to this guideline
would all but guarantee correct program behav-
ior. In such a world, programs that wouldn’t do
the right thing wouldn’t compile, and programs
that compiled would almost certainly do the
right thing. At the human-computer interface
level, commands that wouldn’t do the right thing
would be rejected, and commands that were ac-
cepted would almost certainly do the right thing.
Alas, our world isn’t perfect, but the interfaces
used in most software systems can be signifi-
cantly improved with relatively little effort.

The Most Important
Design Guideline?
Scott Meyers

Copyright © 2004 IEEE. Re-
printed from IEEE Software. This
material is posted here with per-
mission of the IEEE. Such permis-
sion of the IEEE does not in any
way imply IEEE endorsement. In-
ternal or personal use of this ma-
terial is permitted. However, per-
mission to reprint/republish this
material for advertising or pro-
motional purposes or for creating
new collective works for resale or
redistribution must be obtained
from the IEEE by sending a blank
email message to pubs-permis-
sions@ieee.org.

J u l y / A u g u s t 2 0 0 4 I E E E S O F T W A R E 1 5

DESIGN

Improving your interfaces
Consider a (C++) class for represent-

ing dates in time and how its construc-
tor might be declared:

class Date {

public:

explicit Date(int month,

int day,

int year);

};

This is a classic example of an interface
that’s easy to use incorrectly. Because all
three parameters are the same type,
callers can easily mix up the order, an er-
ror that’s especially likely given that dif-
ferent cultures have different ordering
conventions for a date’s month, day, and
year. Furthermore, the interface allows
for nonsense data to be passed in, for ex-
ample, a value of −29 for a month.

Creating separate types for days,
months, and years can eliminate the or-
dering errors, and creating a fixed set
of immutable Month objects can essen-
tially eliminate the possibility of speci-
fying invalid months. See Figure 1 for
an example of this approach.

Figure 1 points out two important as-
pects to designing interfaces that obey the

guideline. First, interface designers must
train themselves to try to imagine all (rea-
sonable) ways in which their interfaces
could be used incorrectly. Second, they
must find ways to prevent such errors
from occurring.

Perhaps the most widely applicable
approach to preventing errors is to define
new types for use in the interface, in this
case, Day, Month, and Year. It’s best if
such types exhibit the usual character-
istics of good type design, including
proper encapsulation and well-designed
interfaces, but this example demonstrates
that even introducing thin wrappers such
as Day and Year can prevent some kinds
of errors in date specification.

A second commonly useful ap-
proach to preventing errors is to elimi-
nate the possibility of clients creating in-
valid values. This approach applies when
we know the universe of possible values
in advance. In the date-specification
example we just saw, I know that there
are only 12 valid months, so I created
a Month class with a private construc-
tor, thus preventing the creation of
Month values other than the 12 specific
constant objects offered by the class.
An alternative means to a similar end
would be to use an enum, but, at least
in C++, enums are less type-safe than
classes, because the line between enums
and ints isn’t as distinct as we might
wish.

In addition to introducing new types
to the revised Date interface, I also
added new constructors to the design.
The Day, Month, and Year types make
the interface harder to use incorrectly,
but without the Date constructor over-
loads, the result is also harder to use
correctly. Good interfaces support as
many forms of correct use as possible
while simultaneously thwarting as many
incorrect forms as possible. Both efforts
are necessary. One without the other
won’t suffice.

struct Day { int d; }; // thin wrappers for Day and Year

struct Year { int y; };

class Month {

public:

static const Month Jan; // a fixed set of immutable

static const Month Feb; // Month objects

...

static const Month Dec;

private:

explicit Month(int);

};

class Date { // revised (safer,

public: // more flexible)

explicit Date(Day d, Month m, Year y); // interface

explicit Date(Month m, Day d, Year y);

explicit Date(Year y, Month m, Day d);

...

};

Figure 1. Design for date specification that’s easy to use correctly and hard to use incorrectly.

Responsibility
for interface usage

errors belongs to the
interface designer,

not the interface user.

1 6 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

DESIGN

Forcing users of an interface to
choose from a set of guaranteed-valid
choices is often good design, but it’s not
a panacea. Consider Figure 2, which
shows how drop-down boxes for day,
month, and year at the United Airlines’
Web site still allow users to specify an
invalid date (such as June 31). This is
an example of an interface that appears
to conform to the guideline, but doesn’t,
because it lulls the user into a feeling
that mistakes are impossible. That is,
it’s easy to use incorrectly.

Note also that restricting users to
choosing from a set of guaranteed-
valid choices doesn’t necessarily guar-
antee that the resulting data will be
correct. The most constrained GUI
drop-down boxes (or class construc-
tors) in the world can’t keep me from

specifying August 27 when what I re-
ally meant was July 27.

In fact, forcing users to specify infor-
mation via this kind of interface might
actually increase the chances of specify-
ing invalid data. Many GUI forms (in
both applications and at Web sites) use
drop-down boxes for specifying a state,
for example, and my experience has been
that I inadvertently specify the wrong
state much more frequently than I
mistype my state’s two-letter abbrevia-
tion. If my experience is at all typical
(and anecdotal evidence suggests that it
is), that indicates that a drop-down box
for this information is inferior to a simple
text input box when considering which
interface is easier to use correctly and
harder to use incorrectly. It’s important
not to lose sight of this goal lest we con-
fuse means and ends. The goal is an in-
terface that’s easy to use correctly and
hard to use incorrectly. An approach
that’s often helpful in achieving this is to
restrict the available input values, but
sometimes that approach can be counter-
productive.

Another example of an easy-to-
misuse interface is one where a func-
tion returns a resource that the caller is
responsible for releasing. Even languages
with garbage collection exhibit this prob-
lem, because memory isn’t the only re-
source. Consider the example in Figure
3. Here, the interface presented by the
getResource method is a resource leak
waiting to happen. All it takes is a
client who forgets to call release
when they are supposed to. The C++
approach to this problem would be to

put the resource-releasing code (possibly
as part of a reference-counting scheme)
in Resource’s destructor. Callers of
getResource could then forget about
resource management, because it would
be automatic.

Unfortunately, languages such as
Java and the .NET languages don’t offer
destructors or their equivalent, and the
idioms that address resource issues such
as this (finally or using blocks, for
example) put the onus on clients to re-
member to use the idioms. But inter-
faces that rely on clients remembering to
do something are easy to use incorrectly.

In situations like this, good interface
designers fall back on simple encapsu-
lation: if something is tricky or error-
prone and there’s no way to get around
it, they hide the tricky or error-prone
code as much as possible, so as few
people as possible have to deal with it.
For example, getResource might be
declared private or protected so
that the easy-to-use-incorrectly inter-
face is accessible to relatively few
clients. In addition, Resource might
be outfitted with debugging capabili-
ties so that situations in which objects
that are leaked or that have unusually
long lifetimes (suggesting an overly late
call to release) are easy to identify.

A dhering to the guideline that inter-
faces should be easy to use correctly
and hard to use incorrectly leads to

systems that are both more usable and
more likely to be used correctly. That’s
why it’s the most important general de-
sign guideline in my arsenal. To employ
it, designers need to train themselves to
anticipate what clients might reasonably
like to do, and then facilitate that activity.
They also must anticipate what clients
might incorrectly do, and prevent that ac-
tivity. Above all, it requires remembering
that when an interface is used incorrectly,
the fault is that of the interface designer,
not the interface user.

Scott Meyers is an independent consultant on software
development. He authored Effective C++, More Effective C++,
and Effective STL, is consulting editor for Addison-Wesley’s Effec-
tive Software Development Series, and serves on advisory boards
for Software Development magazine and several start-up compa-
nies. Contact him at smeyers@aristeia.com; www.aristeia.com.

Figure 2. Drop-down box allowing
specification of an invalid date.

class Resource {

public:

Resource();

void release();

static // caller must call

Resource getResource(); // release on the

// returned object

};

Figure 3. Another example of an easy-to-misuse interface, where the function
returns a resource that the caller is responsible for releasing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

