
© 2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for

creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained

from the IEEE.

For more information, please see www.ieee.org/portal/pages/about/documentation/copyright/polilink.html.

www.computer.org/software

Agile Programming:
Design to Accommodate Change

Dave Thomas

Vol. 22, No. 3

May/June 2005

This material is presented to ensure timely dissemination of scholarly and technical
work. Copyright and all rights therein are retained by authors or by other copyright

holders. All persons copying this information are expected to adhere to the terms and
constraints invoked by each author's copyright. In most cases, these works may not be

reposted without the explicit permission of the copyright holder.

1 4 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 5 / $ 2 0 . 0 0 © 2 0 0 5 I E E E

design
E d i t o r : M a r t i n F o w l e r ■ T h o u g h t Wo r k s ■ f o w l e r @ a c m . o r g

A
gile development provides a set of
practices simple enough to engage de-
velopers, managers, and customers yet
sufficiently sound and disciplined to
build quality software with predict-
ability (see www.agilemanifesto.org).

Applications are expected to evolve over time as
their requirements change, and agile develop-

ment’s refactoring and testing
practices accommodate soft-
ware evolution. (Indeed, Ex-
treme Programming’s maxim is
“embrace change,” and today’s
best developers view refactor-
ing as a badge of honor.)

Refactoring improves code,
usually increasing the function
while reducing code bulk.
However, such refactoring or

restructuring often forces the application to un-
dergo a complete development cycle, including
unit, acceptance, and regression testing, fol-
lowed by subsequent redeployment. In a large
IT or engineering production system, this can
be time consuming and error prone.

Agile programming is design for change,
without refactoring and rebuilding. Its objec-
tive is to design programs that are receptive to,
indeed expect, change. Ideally, agile program-
ming lets changes be applied in a simple, local-
ized way to avoid or substantially reduce major
refactorings, retesting, and system builds.

Table-driven programming encompasses
four well-known but perhaps forgotten agile-

programming techniques that help anticipate
and accommodate many common changes.

Table-driven programming
In the early 1970s, systems programmers

took great pride in using table-driven program-
ming, much as programmers today might talk
about their models or design patterns. It’s a
proven technique for implementing policy-
driven systems, and it uses state pattern match-
ing, concurrency, and workflow; decision tables
(business and engineering rules); and constraints
(spreadsheets).

Separating policy from mechanism
The principle of separating policy (what)

from mechanism (how) is a best practice in de-
sign. A policy-driven system uses a set of rules
to describe a specific policy and an associated
specialized policy “language” runtime that pro-
vides the execution mechanism.

Given a well-designed policy language, an
analyst, engineer, or end user can often com-
pletely describe the system behavior. This elimi-
nates the potentially expensive and error-prone
step of translating from business requirement to
implementation.

State tables
Most designers are familiar with simple

state tables, state transition diagrams, or regu-
lar expressions. The difficulties with maintain-
ing huge state machines found in large com-
plex mission-critical applications led to the

Agile Programming:

Design to Accommodate
Change

Dave Thomas

M a y / J u n e 2 0 0 5 I E E E S O F T W A R E 1 5

DESIGN

breakthrough development of state
charts,1 which brought modularity to
state tables. The combination of state
charts and objects produced several
powerful variations called object charts.
UML provides object charts, which are
unfortunately a little more complex
than many applications need.

State tables are most commonly used
for validating input sequences, for simple
parsing and event processing in user in-
terfaces,2 and for managing asynchro-
nous concurrent communications events.
Unfortunately, far too many user inter-
face designers fail to appreciate the state
space’s complexity, hard coding the state
model rather than designing and imple-
menting a proper state transition model.
State tables are used in engineering for
process control and in business for com-
plex workflow.

Decision tables
Few developers are familiar with de-

cision tables—one of the simplest and
most powerful techniques for dealing
with complex logic. A decision table is
unique in that an end user can easily
specify and maintain it. The table com-
prises a set of conditions placed above a
set of actions to perform (see Table 1).

For each combination of conditions
(c1, c2, …), a rule exists (r1, r2, and so
forth). Each rule comprises a Yes, No,
or Don’t Care (–) response and contains
an associated list of actions (a1, a2, and
so forth). Then, for each action, an ac-
tion sequence number specifies the or-
der in which an action should be per-
formed if this set of conditions is true.
For example, if c1, c3, c4, and c5 are all
true, then a1 should be followed by a3.

This simple table format makes it easy
for end users to specify the conditions, ac-
tions, and rules. Users needn’t worry
about complex nested if then else

statements or be confused by and/or
when describing complex logic. Addi-
tional tables can be automatically checked
to determine if rules are redundant or am-
biguous.3 Finally, an else rule either traps
all unspecified cases, or the cases trigger an
exception. Designers can decompose very
complex logic into multiple tables, which
invoke other tables as actions.

I’ve applied decision tables in do-

mains from embedded real-time sys-
tems to library loans, and I’m always
amazed that the users can diagnose the
problems and often repair them with-
out developer intervention! David Par-
nas has discussed the use of tableaus of
a similar nature in formal documenta-
tion for mission-critical systems such
as nuclear reactors.4

Spreadsheets
Many policies exist that users can

conveniently express in a simple spread-
sheet using their favorite desktop tool.
These policies can be used daily to de-
fine everything from salaries and bene-
fits to drill-holes for engine blocks. This
makes spreadsheets a natural tool for
defining policies. Executing them using
a spreadsheet tool is straightforward,
provided you apply some discipline—
such as remaining consistent with the
naming and layout.

Implementation
A generator can help automatically

translate policies into Java, C#, or
C++, as is currently done for UML
state and message sequence charts.
However, for many years, developers
have been translating policies into tab-
ular data structures and then evaluat-
ing them using a simple interpreter.

This latter style of table-driven pro-
gramming has important advantages.
First, because the policy is represented
as data, developers and sometimes end
users can change it on the fly and use it
to support mission-critical nonstop ap-
plications. Second, the tables and inter-
preter require substantially less space
than the compiled representation. The
cost of interpretation is minimal for 90
percent of applications whose perfor-
mance is dominated by other factors.

Clearly, being able to test and man-
age tables is important. Developers can
apply user-centered testing tools such
as FitNesse (http://fitnesse.org/FitNesse.
WhatIsFitNesse) to the tables, and the
tables can be stored in the configuration
management system and managed along
with the application code. Furthermore,
because the tables are represented as
data, you can easily modify them using
maintenance transactions or table edi-
tors and deploy them in the application
as soon as the next transaction.

The ability to dynamically reconfig-
ure applications will become increas-
ingly important as businesses evolve
into real-time distributed enterprises.
There’s no more agile business than

Few developers are
familiar with decision

tables—one of the
simplest and most

powerful techniques
for dealing with
complex logic.

Table 1
A decision table, comprising a set of conditions

and a set of actions to be performed
Rules

Conditions/actions r1 r2 r3 r4 Else

Condition stub c1 Y N Y N –
c2 – Y – N –
c3 Y N N N –
c4 Y – N N –
c5 Y Y Y Y –

Action stub a1 1 2 – 3 –
a2 – 1 – 1 2
a3 2 3 2 – –
a4 – – 1 2 1

1 6 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

DESIGN

one that can change its business poli-
cies, test, and redeploy without recom-
pilation or reloading.

State tables have obvious implemen-
tations as a 2D array, which can be
represented as a sparse array for very
large tables. Object charts can have
subtle semantics, so I generally recom-
mend using a well-designed evaluator.1

In the case of decision tables, my fa-
vorite implementation is the rule mask
technique,3 a compact and efficient in-
terpreter. Tables are represented com-
pactly as bit vectors and a simple inter-
preter that uses bit operations. This
implementation also provides a simple
technique for definition time checking
of conflicts or ambiguities.

Spreadsheets can be parsed with a
simple parser that records the depen-
dencies such as c11 needs a11 and b11
to compute a11 + b11. The simple con-
straint system is easily solved by sorting
the dependencies using a topological

sort.5 Clearly, if special formulas or
macros exist, you need to provide the
equivalent action code. To evaluate the
spreadsheet, you walk the sorted de-
pendency table in order, evaluating
each element.

F rom the outset, agile development
focuses on accommodating program
evolution. It’s important in design to

consider those points of the system that
will likely undergo substantial change.
At such points, it’s often appropriate to
apply agile-programming techniques.

Software designed using older table-
driven techniques is often far more
portable and malleable than equivalent
human- or machine-generated code.
Because it’s much easier to change data
than code, data table representations
allow programs to be changed on the
fly, often by end users!

References
1. M. Samek, Practical Statecharts in C/C++,

CMP Books, 2002.
2. R.C. Martin, J.W. Newkirk, and B. Rao, “Task-

master: An Architecture Pattern for GUI
Applications,” C++ Report, vol. 9, no. 3,
1997, pp. 12–14, 16–23; www.objectmentor.
com/resources/articles/taskmast.pdf.

3. P.J.H. King, “Conversion of Decision Tables
to Computer Programs by Rule Mask Tech-
niques,” Comm. ACM, vol. 9, no. 11, 1966,
pp. 796–801.

4. D.L. Parnas, J. Madey, and M. Iglewski, “Pre-
cise Documentation of Well-Structured Pro-
grams,” IEEE Trans. Software Eng., vol. 20,
no. 12, 1994, pp. 948–976.

5. D. Knuth, The Art of Programming, Addison-
Wesley, 1973.

Dave Thomas is cofounder of Bedarra Research Labs
(www.bedarra.com) and the OpenAugment Consortium (www.
openaugment.org), and an adjunct professor at Carleton Univer-
sity and the University of Queensland, Australia. He’s also a
founding director of AgileAlliance.com and founder of Object-
Technology International (www.oti.com). Contact him at dave@
bedarra.com; www.davethomas.net.

The importance of testing in the software development process is widely accepted through-
out the software community. However, software consumers and organizations sustain high
losses due to defective software, which means that this is no straightforward process.

This issue will offer IEEE Software readers practical and proven solutions that help them to
effectively and efficiently address their testing needs. We will focus on unit testing as one of
the first and crucial aspects for V&V. Some unit testing-related issues that might be of inter-
est to readers are:

• Automation of software testing

• Real experiences showing benefits of less widespread/applied testing techniques

• Empirical studies on testing techniques

• Trade-off analysis of testing techniques effectiveness and efficiency

• Improving testing relationships (management, users, teams, developers)

• Relevant testing metrics

• Best practices for testing in particular domains

• Landscape and trends for testing standards

• Experiences in testing process improvement

Manuscripts must not exceed 5,400 words, including figures and
tables, which count for 200 words each. Submissions in excess of
these limits may be rejected without refereeing. The articles we
deem within the theme’s scope will be peer-reviewed and are sub-
ject to editing for magazine style, clarity, organization, and space.
We reserve the right to edit the title of all submissions. Be sure to
include the name of the theme you are submitting for.

For detailed author guidelines and submission details, see
www.computer.org/software/author.htm#Submission or email
software@computer.org. To submit, go to
http://cs-ieee.manuscriptcentral.com/index.html.

Submission deadline: 1 November 2005
Publication: July/August 2006

Submission deadline: 1 November 2005
Publication: July/August 2006

CALL FOR ARTICLES:

Software Testing
CALL FOR ARTICLES:

Software Testing

Please contact the guest editors for more
information about your idea’s relevance to the topic area:

IEEE

Natalia Juristo, natalia@fi.upm.es • Ana M. Moreno, ammoreno@fi.upm.es • Wolfgang B. Strigel, strigel@qalabs.com

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

