
D
   when you first programmed? I re-
member the wonderful way in which I could type
a few statements in some obtuse language into the

machine, debug a bit, and the machine would respond. Not
just was it easy to get the computer to do something, it was
also easy to change the program to get it to do something
else. It was just a matter of a few changes and a little debug-
ging. After all, the whole point of software was to be soft.

Of course, the changeability of software was an illusion. In
many ways, one of the biggest differences between a software
developer and a regular human is that the software developers
know how hard it is to change software. Or rather, it’s not that
it’s hard to change software, it’s just hard to change software
without it breaking.

This problem is something that software people have
known about for a long time. It is why doing ad hoc design—
designing as you go about building a program—doesn’t work
for larger-scale systems.

To resolve this problem, software developers took inspira-
tion from other branches of engineering. In these disciplines,
there is a clear separation between the design process and the
construction process. The designers communicate with the
construction people by using drawings that lay out exactly
how something is to be built.

This idea underpins most of the methods in software de-
velopment. Instead of ad hoc design, we have what I call up-

front design. The idea is that designers make design decisions
before those decisions are programmed. The idea is that once
the design is developed, it should not significantly change after
programming has started. Of course, changes do occur, but
the explicit purpose of the up-front process is to minimize
these changes.

The difficulty, of course, is getting these designs close
enough that you don’t have any significant changes that cause
the design to deteriorate. This is where the practical problems
start appearing—it’s hard to get a design right in the beginning.

The Reality of Changing Requirements But there is a
more fundamental problem. From time to time, I have to visit
badly messed-up projects, to see if there is a way out of trou-
ble. Whenever this occurs and I talk to the developers, I always

seem to get the same lament: “The users keep changing the
requirements.” This always surprises me: I’m surprised anyone

is surprised by changing requirements. I’ve never come across
a serious project where requirements don’t change. You can
get users to sign off on requirements documents in every
blood group, but they still change their mind.

They change their mind for several reasons. One is that it is
very hard to visualize what a computer system will look like.
Only when you have it in front of you and start using it for
real work do you find out what really is useful and what isn’t.
Another is that businesses change, and a very real and impor-
tant requirement six months ago can become minor as a busi-
ness changes. Exacerbating this is the fact that users increas-
ingly have done a little programming themselves: some VB
here, an Excel macro there. So they know that it’s easy to
change software (they never get systems with the dependency
problems that professionals deal with).

For many, this is the challenge of requirements engineer-
ing. We need to be better at getting requirements right in ad-
vance, to spend more time to get them right, to come up with
new techniques. I used to believe this too, but now I’ve come
to the conclusion that this is unreachable, at least for a while.

One of the key issues here is the balance of wants and costs.

If you buy a car and the salesman says, “Would you like a sun-
roof,” the first question you’ll ask is, “How much?” For $20 I
would have it fitted, for $20,000 I’d do without. We cannot ex-
pect our users to fix their requirements until we can estimate
our costs with reasonable accuracy. Unfortunately, we are very
bad at cost estimation. I don’t think this is because software
developers are stupid; the problem is that our basic materials
keep changing so quickly. Civil engineers would find it diffi-

cult to estimate if the fundamental properties of concrete
kept undergoing a major “upgrade” every year.

So what’s the alternative? I think it comes down to expect-
ing requirements to change and using a development process
that relishes change. This strikes at the core of the up-front de-
sign process. If requirements change without warning, how
can we develop a stable up-front design?

Making Change Easier The answer is to build software
to make it more able to deal with unanticipated change. (We
can build a design that caters for anticipated changes—it is the
unanticipated ones that bite you in the bum.) Objects are a
key part of this. By using objects with encapsulation and poly-

Soft
Keeping Software

Soft

Martin Fowler
fowler@acm.org

M E T H O D S I N P R A C T I C E

Martin Fowler is an independent consultant based in Boston,
Massachusetts.

DISTRIBUTED www.DistributedComputing.com Computing 55

morphic interfaces, we can improve the packaging of our soft-
ware, thus reducing the dependencies and making things eas-
ier to change.

Dynamic development environments also help with brows-
ers, quick ways to get at cross-references, debuggers and in-
spectors that let you explore code, and rapid turns of the com-
pile/link cycle. For many professional developers, these tools
are still new, but any Smalltalker knows how much difference
it makes when you can edit code in a debugger and have the
change made instantly, without an attention-breaking gap
while compiling and linking go on.

Refactoring plays a big role here too. Refactoring is a set
of techniques that let you change the design of software effi-

ciently without introducing bugs. With refactoring, if you get
a design wrong, you can change it later without incurring a
huge cost.

Dynamic Design All of these techniques point toward a
shift in the way we can go about doing design, moving toward
what I call dynamic design. With dynamic design, you don’t try
to get the design right at the beginning. This doesn’t mean
you abandon up-front design; you still do it, but now you don’t
try to find the best solution. Instead all you want is some reason-

able solution. You know that as you build the solution, as you
understand more about the problem, you will realize that the
best solution is different from what you originally came up with.
With refactoring, objects, and a dynamic environment, this is
not a problem, for it is no longer expensive to make the changes.

An important result of this change in emphasis is a greater
movement toward simplicity of design. Before I used dynamic
design, I was always looking for flexible solutions. With any
requirement I would be wondering about how that require-
ment would change during the life of the system. Because de-
sign changes were expensive, I would try to build a design that
would stand up to the changes that I could foresee.

The problem with building a flexible solution is that flexi-
bility costs. Flexible solutions are more complex than simple
ones. The resulting software is then more difficult to maintain
in general, although it is easier to flex in the direction I had in
mind. However, you have to understand how to flex the de-
sign. For one or two aspects this is no big deal, but changes oc-
cur throughout the system. Building this flexibility in all these
places makes the overall system a lot more complex and ex-
pensive to maintain.

The big frustration, of course, is that all this flexibility is
not needed. Some pieces of it will be, but it’s impossible to
predict which. So to gain the flexibility you need, you have to
put in a lot more flexibility than you need.

With dynamic design, you approach the risks of change dif-
ferently. You still think about potential changes, you still con-
sider flexible solutions. But instead of implementing these
flexible solutions, you ask yourself, “How difficult is it going
to be to change a simple solution into a flexible solution?” If,
as happens most of the time, the answer is, “Pretty easy,” then
you just implement the simple solution.

So dynamic design can lead to simpler designs, without
sacrificing flexibility. This makes the design process easier and
less stressful. Once you get a broad sense of those things that
refactor easily, you don’t even think of the flexible solutions.
You have the confidence to refactor if the time comes. As Kent
Beck advises, you build the simplest thing that could possibly
work. As for the flexible, complex design, most of the time
you aren’t going to need it.

That’s quite a change in design process, and it’s been a big
shift for me as a designer. It has several preconditions. You
need good tests, you need objects, you need to know how to
refactor. But the reward is the ability to put away the fear of
changing requirements and to be responsive to your users
without sacrificing your design, and thus your future. Z

M E T H O D S I N P R A C T I C E

DISTRIBUTED 56 Computing December 1998

CHEVY NOVA AWARDS
Here are the nominees for the Chevy Nova

Award, given in honor of GM’s fiasco in

trying to market the car in Central and

South America (in Spanish,“no va” means “it doesn’t go."

• The Dairy Association’s huge success with the campaign “Got

Milk?” prompted them to expand advertising to Mexico. How-

ever, it was soon brought to their attention the Spanish transla-

tion read “Are you lactating?"

• Coors put its slogan, “Turn It Loose,” into Spanish, where it

was read as “Suffer from Diarrhea."

• Scandinavian vacuum manufacturer Electrolux used the follow-

ing in an American campaign: “Nothing sucks like an Electrolux."

• Clairol introduced the “Mist Stick,” a curling iron, into Germany,

only to find out that “mist” is slang for manure. Not too many

people had use for the “Manure Stick."

• When Gerber started selling baby food in Africa, it used the

same packaging as in the US, with the smiling baby on the label.

Later they learned that in Africa, companies routinely put on la-

bels pictures of what’s inside, since many people can’t read.

• In China, Pepsi’s “Come alive with the Pepsi Generation” trans-

lated into “Pepsi brings your ancestors back from the grave.”

• The Coca-Cola name in China was first read as “Kekoukela,"

meaning “bite the wax tadpole” or “female horse stuffed with

wax," depending on the dialect. Coke researched 40,000 charac-

ters to find a phonetic equivalent “kokou kole," translating into

“happiness in the mouth."

• Frank Perdue’s chicken slogan, “It takes a strong man to make

a tender chicken” was translated into Spanish as “it takes an

aroused man to make a chicken affectionate."

• When Parker Pen marketed a ball-point pen in Mexico, its ads

were supposed to have read, “It won’t leak in your pocket and

embarrass you.” The company thought that the word “em-

barazar” (to impregnate) meant to embarrass, so the ad read:

“It won’t leak in your pocket and make you pregnant!"

• When American Airlines wanted to advertise its new leather

first class seats in the Mexican market, it translated its “Fly in

Leather"campaign literally, which meant “Fly Naked” (vuela en

cuero) in Spanish.

Online
OFFLINEOFFLINE

