ECENTLY, | WAS RUNNING A WORKSHOP on object-
oriented analysis. At one point, a participant ex-
claimed: “Is this analysis or design—and what’s the
difference anyway?” It’s a thorny question, one that bugs me
from time to time, and always a good candidate for a flame
war on comp.object.

People imagine that it’s easy to ask someone to build a
computer system. You find a programmer, tell them what you
want, and they go away, get some pizzas, and build it. Yet as
we all know, it is devilishly difficult to actually do this for any-
thing but the smallest system. For a start, there is a lot to tell.
Just writing it all down is a lengthy exercise in itself—hence
the term Victorian Novel Specification. The other awkward
problem is that people will tell you what they want, but you
actually have to build them what they need—not necessarily
the same thing.

In theory, analysis provides a statement that describes the
problem domain, without saying anything about a solution.
Such a statement should not construct anything artificial
about the problem domain and it should be technology inde-
pendent. The software people can then just design a solution
to this statement. Pity things don’t work that way.

In this theory, the term object-oriented analysis is an oxy-
moron. Objects are a design idea—such things as encapsula-
tion, polymorphism, and the like make sense in developing
maintainable software; but if you think of me as a lump of en-
capsulated data with an interface of operations, you need
more than an optician. Having said this, when you see object
people do analysis, the models they come up with are clearly
different in nature than what a relational data modeler would
come up with. To see this, compare the patterns books of
David Hay and myself (Fowler, M., Analysis Patterns: Reusable
Object Models, Addison Wesley, 1997; Hay, D., Data Model Pat-
terns: Conventions of Thought, Dorset House, 1996); we both
claim we are doing analysis modeling, but our style of model-
ing is very different and clearly influenced by the technology.

Is analysis about just recording how the world is, or is it
about designing something new? Few modelers will actually
model what happens in the business. There are frequent con-
tradictions and inconsistencies between users and depart-
ments, and words are used in different ways. We try to ab-
stract, and thus simplify our analysis models, yet such abstrac-
tions are constructed—you can't really say they are in the world.

METHODS

IN PRACTICE

Martin Fowler == fowler@acm.org
Independent consultant in Boston, Massachusetts

Is There Such a Thing as

Object-Oriented Analysis?

Can we, should we, be passive describers when we analyze?
And if we are not, are we really doing design rather than
analysis?

The key to understanding this question is to remember
that all we are doing in analysis is coming up with a descrip-
tion of our understanding of the domain. This description
could be prose, or could use UML. Whether we grace this
description with the term model or not, it is still a descrip-
tion that we construct, not some universal reality we pluck
out of the problem domain; we are building an artificial de-
scription of it. As Jim Odell famously said, we do not model
the world, we model our perception of the world. To do
this we need some language to state our description. To ar-
gue that one language is more natural than another is to ar-
gue that a wooden bridge is more natural than a steel
bridge. Either way, it’s a bridge, and it’s constructed, not
natural.

So, to argue that one modeling language is more natural
than another is unimportant. Naturalness is usually in the eye
of the beholder. The real question is whether one language is
more useful than another.

To answer this new question of usefulness, we must under-
stand what we are building the description for. For most prac-
titioners the purpose is to build software. A good description
is one that helps us build good software—that is, software that
helps the users in their task for a reasonable cost. The descrip-
tion that comes from analysis is only as good as its usefulness
in this task.

Is it more useful to be technology independent? Is it better
that my analysis statement should be equally amenable to ob-
jects, relational databases, functional programming, or any
other design paradigm? Let’s assume for a moment that such
a thing is possible. Eventually we have to implement a solu-
tion. At that point, we have to transform it to the technology
we eventually build with. Such a transformation carries a cost,
and if we want to keep the analysis picture up to date we will
pay an ongoing cost. Is this cost outweighed by the advantages
of a technologically independent model?

My opinion is that it is perfectly reasonable for your
analysis model to lean toward the implementation technol-
ogy you intend it to use if, as a result, the model is more
helpful in understanding the problem you are working on.
For me, the essence of the difference between analysis and

continued on page 41

20 DISTRIBYTED

October 1999



METHODS

design is that analysis is primarily about understanding the do-
main, while design is about understanding the software that
supports that domain. Clearly the two are closely connected,
and the boundary between them can often become pretty
blurred. But the boundary need not be sharp. We shouldn’t
let purity come before usefulness. In theory, having a model
that is both analysis and design is some hybrid that isn’t good
at either, yet I believe that this kind of hybrid makes the best
model.

Why? My view is that the key to the usefulness of an
analysis model is that it’s a communication medium be-
tween the software experts and the business experts. The
software experts need to understand what the model means
in terms of building software, and the business experts need
to understand that the business process is properly de-
scribed so the software experts are understanding the right
thing.

So, what is an analysis model, and what makes it differ-
ent from a design model? For me the issue is one of empha-
sis. Remember, analysis is about understanding how the do-
main works. I build this understanding by building models,
either in my mind, in UML, or in a programming language.
I can be working out the details of some charging algorithm
by programming it, or in a discussion with users about what
they mean by the word asset. I wouldn’t say that figuring
out database interactions or a distributed computing archi-
tecture was analysis. But my analysis models are still driven
by the same heuristics as any other object-oriented soft-
ware. Analysis is essentially the design of the business ob-
jects and business logic. This isn’t everybody’s definition of
analysis, but I find it useful.

So object-oriented analysis is a reasonable notion. It is
building a description of the domain that increases our under-
standing of that domain, in order to help us build an object-
oriented software system. Judging what is a good analysis is
judging its usefulness for that purpose. This is not a definition
that lends itself to a clean separation between analysis and de-
sign, but then such a separation isn’t really useful anyway. As
in engineering, we are faced with blurred boundaries and
trade-offs. That’s just the way life is. ¥

IN PRACTICE

www.DistributedComputing.com DI&WD

41



